直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

为什么国内目前仍有一些人在盲目夸耀国产AI不错,有出息,等等

回答

国内在 AI 领域的发展情况较为复杂。在 2023 年之前,国内 AI 行业曾自认为与美国差距不大且有人口数据优势,但 ChatGPT 和 GPT4 的出现打破了这种认知,直接拉开了 2 年的技术差距。上半年国内坚信靠资金和卡能发展,但试验后发现不易,下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向是短视且致命的。目前国内最领先的模型水平大概在准 ChatGPT3.5,与 GPT4 有差距。

国内大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但受内部短期考核压力等影响,实际效果不明显。具体来说,百度的“文心 4.0”和阿里的“通义千问”是比较突出的。同时,智谱一年间推出了 4 代 GLM,MiniMax 推出了新模型和“星野”APP,月之暗面在长 Token 能力上表现不错。

在图像 AI 领域,国内产品发展迅速,如快手团队开发的“可灵”能生成高质量图像和视频,但价格较高;阿里的“通义万相”在中文理解处理方面出色,操作界面友好,且目前免费,但存在一些局限性。

在硬件层,国内仍面临芯片卡脖子问题,目前没有能胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品出现,但华为昇腾因稳定性和生态问题还需时间打磨。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AGI万字长文(上)| 2023回顾与反思

[title]AGI万字长文(上)| 2023回顾与反思[heading1]上篇:2023,风暴的前奏[heading2]<7>国内进展与卡脖子从业内人的角度,ChatGPT和GPT4的出现时最令人惊讶的,不是它的能力,而是保密工作做的太好。2023之前国内AI行业还处在沾沾自喜,自认为和美国只有个把月差距,而且还有人口数据优势;这种论调一下子被GPT4打回了原形。OpenAI在国内完全没有预警的情况下,直接拉开2年技术差距。具体原因,可能是国内的骄傲自大,可能是被之前Google主推的T5技术路线带偏,也可能是因为AGI实在是影响过于巨大,FBI、美国国防部这些国家机关不可能没和OpenAI打过招呼。OpenAI的成功是大力出奇迹,所以23年上半年国内也笃信只要有卡有钱就可以“大炼钢铁”。那时不论是纷纷囤卡招人,研究类GPT架构的大厂们,还是讲着中国OpenAI的故事,拿着巨额融资的创业公司们,都想要第一个创造国产AGI。而到了下半年,在试验了一番发现不容易之后,又纷纷转向要做“垂直应用”、“商业化”;反而不提AGI了。这个转向是短视的,甚至是致命的。2023年,中美在AGI技术的差距并没有缩小。现在,国内最领先的模型水平大概在准ChatGPT3.5的水平,和GPT4还有不小差距;甚至还不如临时拼凑的Mistral团队的水平。大厂。大厂们无论是人才、GPU、数据,还是资金储备都是可以冲击AGI的,不过从实际效果上来看还并没有明确亮点。但与此同时,受内部短期考核压力的裹挟,大多数力量应该都放在卷新产品圈地盘和向上汇报工作上了。从另一个角度,这些模型虽然能力一般,但和业务的结合都是比较充分的。最后,大厂们同时背负了太多其他业务和政治考量:对于是否做大模型的出头鸟,很多公司都是要三思的。具体来讲,百度和阿里是大厂里比较高调:百度的“文心4.0”是当前国内能力最好的模型之一,即将发布的阿里的“通义千问

给小白的AI产品推荐

首先介绍的是"可灵",这是一款由快手团队开发的AI应用。可灵主要用于生成高质量的图像和视频。它的一大特点是生成的图像质量非常高。可灵最初采用内测邀请制,但现在已经向所有用户开放使用。然而,可灵的价格相对较高。与其他AI应用相比,它的费用要贵一些。对于重度用户,最高档的年费可能达到几千元人民币,如果平均到每个月,使用成本在400到600元人民币之间。但如果临时使用或轻度使用的话,仍然有每日免费点数和60多元单月的最便宜包月选项,对轻度用户来说还是值得一试的。[heading3]3.1.2通义万相[content]通义万相作为国产AI工具,它在中文理解和处理方面表现出色,这一特点使其在国内市场具有独特优势。用户可以从多种艺术风格和图像风格中进行选择,满足不同创作需求。生成的图像质量较高,细节丰富,能够满足大多数用户的期望。操作界面设计简洁直观,用户友好度高,降低了使用门槛。作为阿里生态系统的一部分,该工具可以与阿里其他产品和服务无缝整合,为用户提供更全面的解决方案。重点是现在免费,每天签到获取灵感值就可以。然而,这个应用也存在一些局限性。为了符合国内监管要求,某些类型的图像可能无法生成,这在一定程度上限制了创作自由度。在处理非中文语言或国际化内容方面,它可能不如一些国际AI图像生成工具那样出色。由于模型训练数据可能主要基于中文环境,在处理多元文化内容时可能存在偏差。

AGI万字长文(上)| 2023回顾与反思

[title]AGI万字长文(上)| 2023回顾与反思[heading1]上篇:2023,风暴的前奏[heading2]<7>国内进展与卡脖子智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点其他的我暂时不列了,在2023年官宣AI大模型的公司非常多,其中免不了很多是蹭流量的。以及,大模型确实有门槛,融了资的公司还有些钱花,我们可以多给一些时间看2024年的结果。(判断的方式并不客观,欢迎讨论)从产品层面上,2C端唯一真正出圈的是“妙鸭相机”,不过也只是昙花一现。大多数消费者对于AI产品的态度是“猎奇”,而非刚需。在2B行业中,大模型目前还是“纯技术投入”,对于收入撬动非常有限;而卖AI的大厂们实际上的目的是为了卖云……最后,硬件层上的卡脖子并没有缓解。目前国内仍然没有芯片可以胜任大模型训练。不过在推理上已经开始有Nvidia的替代产品逐渐出现。备受瞩目的华为昇腾在单卡指标上距离不远,但因为稳定性不足和缺乏Cuda(硬件编译库)生态,仍然需要时间打磨。美国对于国内的芯片禁运在未来还会进一步加深;因此,除了卷模型之外,基于昇腾生态的软-硬件创业是一个机会,而且是更确定的机会。

其他人在问
我想要学习AI提示词的使用方法
以下是关于 AI 提示词使用方法的详细介绍: 一、什么是提示词 提示词用于描绘您想要的画面。星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),并且支持中英文输入。启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 二、如何写好提示词 1. 预设词组:小白用户可以点击提示词上方官方预设词组进行生图。 2. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 3. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框。负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 4. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可以对已有的提示词权重进行编辑。 三、辅助功能 1. 翻译功能:一键将提示词翻译成英文。 2. 删除所有提示词:清空提示词框。 3. 会员加速:加速图像生图速度,提升效率。 四、关于 Prompt 的语法规则 1. Prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则:用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。改变 tag 权重有两种写法:括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。还可以进行 tag 的步数控制。 如果您是新手学习 AI,建议先了解 AI 基本概念,阅读「」中找到适合初学者的课程。选择感兴趣的模块深入学习,掌握提示词技巧,通过实践和尝试巩固知识,体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 产品。
2024-11-22
哪些AI软件可以设计提示词和优化提示词
以下是一些可以设计和优化提示词的 AI 软件: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 写好提示词的方法包括使用预设词组、保证内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质等)、调整负面提示词、利用“加权重”功能突出重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt 网站精选: :AI 艺术提示词生成器。 :通过玩游戏练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址为。 魔咒百科词典:简单易用的 AI 绘画 tag 生成器,地址为。 KREA:设计 AI 的 Prompt 集合站,create better prompts,网址为。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址为。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址为。 3. OpenAI API: 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。 模型通过将文本分解为标记(Token)来理解和处理文本,可通过分词器工具了解更多。 需要注意的是,在给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2024-11-22
AI写真
以下是关于 AI 写真的相关内容: 在大淘宝设计部 2023 年度 AI 设计实践报告中: 在定制化真人模特实景素材的主题活动方面,通过 AI 能将策划、搭建、拍摄、设计融合为一个闭环流程,短时间内完成页面所有素材的生产和输出。例如七夕主题活动页面,在 12 个时辰主题下,可不受外部拍摄条件限制,产出符合需求且风格一致的素材。 在产品营销视觉的 UI 设计场景中,采用 AI 能力可快速定制多种用户需要的视觉效果,通过 SD 中 controlnet 的有效控制,能生成指定范围内的 ICON、界面皮肤等内容,增加产品功能的定制可能性。例如 88VIP 的 AI 定制皮肤。 在定制模特 AI 生成方面,通过对 AI 大模型的训练和应用,算法从模特姿态、背景风格、装饰元素等多维度进行效果升级,提升合成的真实性和美感。结合用户脸型、身材数据,为用户提供定制化的线上真人化模特体验。例如 AI 试衣间、AI 写真,简化数据采集流程构建用户的数字分身,根据不同主题的摄影风格生成 AI 写真,让普通用户能通过 AIGC 创造好玩有趣的内容。 在产品场景生成方面,一张商品图结合用户的自定义输入,便可生成多张场景效果,整个过程无需 3D 模型、显卡渲染和线下拍摄。例如“家作”家装场景灵感。
2024-11-22
我想要把思维导图画的更漂亮一些有什么ai可以帮忙
以下是一些可以帮助您把思维导图画得更漂亮的 AI 工具: 1. Lucidchart: 简介:强大的在线图表制作工具,集成 AI 功能,可绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂图表,AI 功能可优化设计。 功能:集成 Office 365,方便与其他 Office 应用协同;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费开源的在线图表绘制工具,适用于多种示意图绘制。 功能:支持本地和云存储;多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 简化图表创建过程。 功能:智能绘图,自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图,适合多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;多种协作功能。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和多种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。
2024-11-22
想学习AI编程需要从哪里开始,有什么资源吗
如果您想学习 AI 编程,可以从以下几个方面开始,并参考以下资源: 开始的方向: 1. 明确编程目标:确定您希望通过 AI 编程实现的具体任务或项目。 2. 了解 AI 编程的边界和限制:明白在何种情况下需要编程,何种情况下可以利用现有工具和资源。 学习资源: 1. 掌握 Python 基础: 基本语法:包括变量命名、缩进等规则。 数据类型:如字符串、整数、浮点数、列表、元组、字典等。 控制流:学会使用条件语句(if)、循环语句(for 和 while)控制程序执行流程。 函数:包括定义和调用函数、理解参数和返回值、掌握作用域和命名空间。 模块和包:学会导入模块和使用包来扩展功能。 面向对象编程(OOP):了解类和对象、属性和方法、继承和多态。 异常处理:理解异常及如何处理程序中的错误。 文件操作:掌握文件读写和文件与路径操作。 2. 在线教程和课程:例如“写给不会代码的你:20 分钟上手 Python + AI”。 3. 项目实践:通过实际项目来巩固所学知识。 开发建议: 1. 对于复杂的项目,如 P2P 传输程序,要充分考虑项目初始化、环境配置、库的选择等。 2. 对于 Rust 环境配置,可通过官网获取安装指南,使用 rustup 工具管理 Rust 版本。使用 cargo new <project_name>创建新的 Rust 项目,生成基本文件结构和 Cargo.toml 文件来管理项目依赖。 在学习过程中,优先寻找线上工具、插件和本地应用,先找现成的开源工具和付费服务,只有在没有现成方案时再考虑自己编程。
2024-11-21
有什么类似于ai秘书的产品吗?
以下是一些类似于 AI 秘书的产品: Replika:用户可在与它的关系中找到意义,每周花费数小时进行对话。 Anima:是一款 AI 聊天机器人产品。 CharacterAI:也是一款相关的产品。 Millie:可以优化约会应用程序的个人资料和消息。 YourMove:具有类似的优化功能。 Mumkin:能够帮助用户应对困难的对话。 早期的聊天机器人如 ELIZA、Clippy、SmarterChild、Alicebot 和 Kuki 等虽曾流行,但未给消费者留下深刻印象。新一波聊天机器人不同,如 ChatGPT 成为最快达到 1 亿用户规模的消费产品,这得益于大型语言模型(LLMs),使聊天机器人能自由流畅对话,听起来和人类无异。如今,容易想象出如人工智能朋友、心理治疗师、导师、教练等角色,早期版本常带有浪漫色彩,这可能与成人娱乐行业处于新技术前沿及社会变化有关。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
国产AI工具最好用的有哪些?
以下是一些好用的国产 AI 工具: 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费最高可达几千元,临时或轻度使用有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可,但在某些方面存在局限性,如某些类型图像因监管要求无法生成,处理非中文语言或国际化内容可能不够出色。 AI 助手平台: 传音智库:公司内部平台,功能类似 Poe,仅内网可访问,可用 kimi 替代。 Kimichat:https://kimi.moonshot.cn/ 秘塔 AI:https://metaso.cn/ 此外,还有一些在特定领域有讨论度的国产 AI 工具,如 Brev.AI 能生成更好听的中文歌等。
2024-11-18
目前国产AI对比国外AI,存在哪些不足和差距,我要实事求是的回答
目前国产 AI 对比国外 AI 存在以下不足和差距: 1. 在通用语言模型方面,如 ChatGPT 和 GPT4 出现后,国内与国外拉开了约 2 年的技术差距。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距,甚至还不如临时拼凑的 Mistral 团队的水平。 2. 国内部分企业可能存在骄傲自大的情况,也可能被之前 Google 主推的 T5 技术路线带偏,同时 AGI 影响巨大,可能存在国外相关机构与 OpenAI 有特殊沟通而国内未有的情况。 3. 2023 年上半年国内笃信靠资金和卡能实现突破,但下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向可能是短视和致命的。 4. 大厂虽具备冲击 AGI 的资源,但受内部短期考核压力影响,多数力量用于卷新产品圈地盘和向上汇报工作,实际效果未达预期,且背负较多其他业务和政治考量。 不过,在图像类 AI 产品方面,国内产品发展迅速,部分产品如通义万相在中文理解和处理方面表现出色,具有独特优势。在 AI 生成视频工具领域,国内涌现出一系列工具,其生成结果在某些方面甚至远超国外。
2024-11-03
国产AI与国外AI的实际差距
国产 AI 与国外 AI 存在一定的差距,但情况较为复杂,且在不同方面表现有所不同。 在 2023 年之前,国内 AI 行业曾自认为与美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。当时国内出现了从追求创造国产 AGI 到转向做“垂直应用”“商业化”的转变。国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 仍有差距。大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但实际效果尚不明确,且受内部短期考核压力等因素影响。 然而到了 2024 年,竞争达到白热化阶段。在文本到视频扩散模型方面,Google DeepMind 和 OpenAI 展示了强大的成果,但中国的相关情况在报告中未详细说明,不过国内也涌现出了一系列表现出色的 AI 生成视频工具,生成结果甚至远超国外。Llama 3.1 在某些任务中能与 GPT4 相抗衡,而中国的一些模型如由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了前沿水平。中国模型在计算效率、数据集建设等方面各有优势,能弥补 GPU 访问的限制等不足。
2024-11-03
有哪些生成音乐的国产AI产品
以下是一些生成音乐的国产 AI 产品: 1. 海绵音乐:https://www.haimian.com/featured 2. MusicFX:https://aitestkitchen.withgoogle.com/zh/tools/musicfx 3. 剪映 4. TikTok 5. Mubert 6. 唱鸭 7. 网易天音 此外,还有一些国际上知名的 AI 音乐生成工具,如: 1. Suno:https://suno.com/ ,通过先进的深度学习技术,能将用户输入转化为富有情感且高质量的音乐作品。 2. Udio:https://www.udio.com/ ,由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。 另外,还有一些其他相关的产品: 1. 由 AI 驱动的软件引擎,可以生成音乐,能对手势、动作、代码或其他声音作出反应。 2. 全球最大的音乐教育平台。 3. 用于创作歌曲和音频录制的应用程序。 4. 提供无缝录音室体验的一体化在线协作平台。 5. 专业音频、语音、声音和音乐的扩展服务。 6. 视频编辑的音频解决方案。 7. 由 AI 驱动的音乐工作室。 8. 通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 9. AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 10. 为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 11. 为创作者提供的在线音乐软件:音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。 12. (被 Meta 收购) 为创作者提供的音频和视频编辑软件。 13. 音乐人的应用程序。 14. (前身为 Tonz) 实时神经信号处理。 15. 奥地利制造的音频软硬件。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-14
国产 大模型
以下是关于国产大模型的相关信息: Qwen 是国内唯一出现在 OpenAI 视野里、可以参与国际竞争的国产大模型。OpenAI 创始人奥特曼在 X 上转发了相关消息,Qwen 多次冲进 LMSys 榜单,其开源模型累计下载量突破 1600 万,国内外有海量开发者基于它开发模型和应用,海外开发者对其评价颇高。通义大模型用行动证明了开源开放的力量。 在中文大模型基准测评 2023 年度报告的专业与技能专项基准中,GPT4 Turbo 领先幅度较大,国内中文心一言 4.0 表现不俗,在开源模型中,阿里云的 Qwen72BChat 表现可圈可点,是国内开源模型中唯一超过 60 分的模型。总体来看,国内第一梯队大模型在专业与知识能力上与国外最好模型有较大距离,但差距正在不断缩小。 在语言与知识的测评中,GPT4 Turbo 依然领先,国内大模型表现相对较好,有 14 个模型得分高于 GPT3.5,有 9 个模型得分高于 GeminiPro。OPPO 的 AndesGPT、阿里云的通义千问 2.0、月之暗面的 Moonshot 分列国内 1 3 位,较为接近 GPT4。在开源模型中,零一万物的 Yi34BChat、阿里云的 Qwen72BChat、百川智能的 Baichuan213BChat 取得不错成绩,均超过 50 分,分列国内模型的 1 3 名。总体来看,在中文语言与知识能力上,国内大模型已基本追赶上国外头部大模型,未来最可能率先形成超越。
2024-09-30