国内在 AI 领域的发展情况较为复杂。在 2023 年之前,国内 AI 行业曾自认为与美国差距不大且有人口数据优势,但 ChatGPT 和 GPT4 的出现打破了这种认知,直接拉开了 2 年的技术差距。上半年国内坚信靠资金和卡能发展,但试验后发现不易,下半年纷纷转向“垂直应用”“商业化”,不提 AGI,这种转向是短视且致命的。目前国内最领先的模型水平大概在准 ChatGPT3.5,与 GPT4 有差距。
国内大厂在人才、GPU、数据和资金储备上有冲击 AGI 的能力,但受内部短期考核压力等影响,实际效果不明显。具体来说,百度的“文心 4.0”和阿里的“通义千问”是比较突出的。同时,智谱一年间推出了 4 代 GLM,MiniMax 推出了新模型和“星野”APP,月之暗面在长 Token 能力上表现不错。
在图像 AI 领域,国内产品发展迅速,如快手团队开发的“可灵”能生成高质量图像和视频,但价格较高;阿里的“通义万相”在中文理解处理方面出色,操作界面友好,且目前免费,但存在一些局限性。
在硬件层,国内仍面临芯片卡脖子问题,目前没有能胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品出现,但华为昇腾因稳定性和生态问题还需时间打磨。
[title]AGI万字长文(上)| 2023回顾与反思[heading1]上篇:2023,风暴的前奏[heading2]<7>国内进展与卡脖子从业内人的角度,ChatGPT和GPT4的出现时最令人惊讶的,不是它的能力,而是保密工作做的太好。2023之前国内AI行业还处在沾沾自喜,自认为和美国只有个把月差距,而且还有人口数据优势;这种论调一下子被GPT4打回了原形。OpenAI在国内完全没有预警的情况下,直接拉开2年技术差距。具体原因,可能是国内的骄傲自大,可能是被之前Google主推的T5技术路线带偏,也可能是因为AGI实在是影响过于巨大,FBI、美国国防部这些国家机关不可能没和OpenAI打过招呼。OpenAI的成功是大力出奇迹,所以23年上半年国内也笃信只要有卡有钱就可以“大炼钢铁”。那时不论是纷纷囤卡招人,研究类GPT架构的大厂们,还是讲着中国OpenAI的故事,拿着巨额融资的创业公司们,都想要第一个创造国产AGI。而到了下半年,在试验了一番发现不容易之后,又纷纷转向要做“垂直应用”、“商业化”;反而不提AGI了。这个转向是短视的,甚至是致命的。2023年,中美在AGI技术的差距并没有缩小。现在,国内最领先的模型水平大概在准ChatGPT3.5的水平,和GPT4还有不小差距;甚至还不如临时拼凑的Mistral团队的水平。大厂。大厂们无论是人才、GPU、数据,还是资金储备都是可以冲击AGI的,不过从实际效果上来看还并没有明确亮点。但与此同时,受内部短期考核压力的裹挟,大多数力量应该都放在卷新产品圈地盘和向上汇报工作上了。从另一个角度,这些模型虽然能力一般,但和业务的结合都是比较充分的。最后,大厂们同时背负了太多其他业务和政治考量:对于是否做大模型的出头鸟,很多公司都是要三思的。具体来讲,百度和阿里是大厂里比较高调:百度的“文心4.0”是当前国内能力最好的模型之一,即将发布的阿里的“通义千问
首先介绍的是"可灵",这是一款由快手团队开发的AI应用。可灵主要用于生成高质量的图像和视频。它的一大特点是生成的图像质量非常高。可灵最初采用内测邀请制,但现在已经向所有用户开放使用。然而,可灵的价格相对较高。与其他AI应用相比,它的费用要贵一些。对于重度用户,最高档的年费可能达到几千元人民币,如果平均到每个月,使用成本在400到600元人民币之间。但如果临时使用或轻度使用的话,仍然有每日免费点数和60多元单月的最便宜包月选项,对轻度用户来说还是值得一试的。[heading3]3.1.2通义万相[content]通义万相作为国产AI工具,它在中文理解和处理方面表现出色,这一特点使其在国内市场具有独特优势。用户可以从多种艺术风格和图像风格中进行选择,满足不同创作需求。生成的图像质量较高,细节丰富,能够满足大多数用户的期望。操作界面设计简洁直观,用户友好度高,降低了使用门槛。作为阿里生态系统的一部分,该工具可以与阿里其他产品和服务无缝整合,为用户提供更全面的解决方案。重点是现在免费,每天签到获取灵感值就可以。然而,这个应用也存在一些局限性。为了符合国内监管要求,某些类型的图像可能无法生成,这在一定程度上限制了创作自由度。在处理非中文语言或国际化内容方面,它可能不如一些国际AI图像生成工具那样出色。由于模型训练数据可能主要基于中文环境,在处理多元文化内容时可能存在偏差。
[title]AGI万字长文(上)| 2023回顾与反思[heading1]上篇:2023,风暴的前奏[heading2]<7>国内进展与卡脖子智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点其他的我暂时不列了,在2023年官宣AI大模型的公司非常多,其中免不了很多是蹭流量的。以及,大模型确实有门槛,融了资的公司还有些钱花,我们可以多给一些时间看2024年的结果。(判断的方式并不客观,欢迎讨论)从产品层面上,2C端唯一真正出圈的是“妙鸭相机”,不过也只是昙花一现。大多数消费者对于AI产品的态度是“猎奇”,而非刚需。在2B行业中,大模型目前还是“纯技术投入”,对于收入撬动非常有限;而卖AI的大厂们实际上的目的是为了卖云……最后,硬件层上的卡脖子并没有缓解。目前国内仍然没有芯片可以胜任大模型训练。不过在推理上已经开始有Nvidia的替代产品逐渐出现。备受瞩目的华为昇腾在单卡指标上距离不远,但因为稳定性不足和缺乏Cuda(硬件编译库)生态,仍然需要时间打磨。美国对于国内的芯片禁运在未来还会进一步加深;因此,除了卷模型之外,基于昇腾生态的软-硬件创业是一个机会,而且是更确定的机会。