直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AGI是什么意思

回答

AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。做任何人类可以做的事,涵盖了广泛的认知技能和能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。在 2000 年代初,“通用人工智能”这一名词开始流行,以强调从“狭义 AI”到更广泛的智能概念的追求。但目前 AGI 还未取得巨大进展。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC常见名词解释(字典篇)

chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~ chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~ AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!

学习笔记:AI for everyone吴恩达

监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

报告:GPT-4 通用人工智能的火花

[title]报告:GPT-4通用人工智能的火花[heading1]1.介绍Introduction智能是一个多方面而难以捉摸的概念,长期以来一直挑战着心理学家、哲学家和计算机科学家。1994年,一组52名心理学家签署了一份有关智能科学的广泛定义的社论,试图捕捉其本质。共识小组将智能定义为一种非常普遍的心理能力,其中包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力。这个定义意味着智能不仅限于特定领域或任务,而是涵盖了广泛的认知技能和能力——建立一个能够展示1994年共识定义所捕捉到的通用智能的人工系统是人工智能研究的一个长期而宏伟的目标。在早期的著作中,现代人工智能(AI)研究的创始人提出了理解智能的一系列宏伟目标。几十年来,AI研究人员一直在追求智能的原则,包括推理的普适机制(例如[NSS59],[LBFL93])以及构建包含大量常识知识的知识库[Len95]。然而,最近的许多AI研究进展可以描述为「狭义地关注明确定义的任务和挑战」,例如下围棋,这些任务分别于1996年和2016年被AI系统掌握。在1990年代末至2000年代,越来越多的人呼吁开发更普适的AI系统(例如[SBD+96]),并且该领域的学者试图确定可能构成更普遍智能系统的原则(例如[Leg08,GHT15])。名词「通用人工智能」(AGI)在2000年代初流行起来(见[Goe14]),以强调从「狭义AI」到更广泛的智能概念的追求,回应了早期AI研究的长期抱负和梦想。我们使用AGI来指代符合上述1994年定义所捕捉到的智能广泛能力的系统,其中包括了一个附加的要求,即这些能力在或超过人类水平。然而,我们注意到并没有一个被广泛接受的AGI定义,我们在结论部分讨论其他定义。

其他人在问
可以介绍下AGI的知识体系吗,从入门级开始
以下是为您介绍的 AGI 知识体系入门级内容: 首先,推荐您从以下几个方面开始了解: 1. 记忆相关基础知识,如 AI 的历史、基本术语、重要人物、方法和原理等。您可以通过以下链接获取详细信息: 其次,您可以先试用提示词练手,参加相关的 battle 活动,如 prompt battle、video battle 等,与大神交流。还可以关注最新活动,如 AI 春晚、AIPO 项目等,感兴趣的话可以报名参与执行导演、平面设计、商务统筹或运营等工作。 另外,“通往 AGI 之路”不仅是开源的 AI 知识库,更是连接 AI 学习者、实践者、创新者的社区,基于无边界组织完成了 AI 春晚、“离谱村”短片等共创项目。 市面上的【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。
2024-11-23
AGI是什么
AGI 即通用人工智能(Artificial General Intelligence),是指能够像人类一样思考、学习和执行多种任务的人工智能系统。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 此外,AI 分为 ANI 和 AGI,ANI 得到巨大发展但 AGI 还没有取得巨大进展。ANI 即弱人工智能,只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2024-11-22
什么是AGI
AGI 即强人工智能或通用人工智能,是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 AGI 的五个发展等级分别为: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 OpenAI 原计划在 2026 年发布的 Q 下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停,计划在 2027 年发布的 Q 2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。更多信息请见(AGI)。
2024-11-21
什么时候可以实现agi
目前关于通用人工智能(AGI)实现的时间存在多种推测和计划。据相关信息,OpenAI 原计划在 2026 年发布最初被称为 GPT6 但后来重新命名为 GPT7 的模型,然而由于埃隆·马斯克的诉讼而被暂停。计划在 2027 年发布的 Q 2025(GPT8)有望实现完全的 AGI。另外,OpenAI 总裁 Greg Brockman 在 2019 年表示,在微软投资 10 亿美元之后,OpenAI 计划在五年内构建一个与人类大脑大小相当的模型,即到 2024 年。但需要注意的是,这些信息多为推测和拼凑,且来源复杂,包括推特用户的搜集和 LongjumpingSky1971 的帖子等,大家可当作娱乐参考,自行辨别其可能性。
2024-11-20
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
你觉得AGI是什么
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的人工智能系统。它能够完成任何聪明人类所能完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前,像 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。但需要注意的是,强人工智能目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 对于“智能”的定义较为模糊,阿兰·图灵提出了名为“图灵测试”的方法,该方法将某一计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,那么这个计算机系统就会被认为是“智能”的。
2024-11-18
sft是什么意思
“SFT”可能有多种含义。在音乐领域,它可能指某种特定的音乐风格,如“Swift”指快速和敏捷的音乐风格,常用于表现快速和敏捷的情感,如 Taylor Swift 的《Shake It Off》;“Swirling”指旋转和流动的音乐风格;“Swooning”指陶醉和倾倒的音乐风格;“Syllabic”指音节和节奏的音乐风格;“Symbiotic”指共生和互助的音乐风格。 在语音处理方面,“SFT”可能指短时傅里叶变换(Shorttime Fourier Transform,STFT)。语音通常是短时平稳信号,在进行傅里叶变换前一般要进行分帧,取音频的小片段进行短时傅里叶变换。其结果是一个复数,包括幅度和相位信息。能量频谱是振幅频谱的平方,通过对频域信号进行逆傅里叶变换可恢复时域信号。离散傅里叶变换计算复杂度高,可采用快速傅里叶变换简化。在实际应用中,对语音信号分帧加窗处理,视为短时傅里叶变换。
2024-11-17
WAY TO AGI中AGI是什么意思?
AGI 指通用人工智能,也叫强人工智能。通常在其出现时会是奇点科技大爆炸的时刻,科技将推动文明呈指数级增长。虽然通往通用人工智能的道路可能还漫长,但它已如海风般逐渐临近。例如科幻作家刘慈欣所说“未来已来,像盛夏的大雨,在我们还不及撑开伞时就扑面而来”(很多人早就失业了)。
2024-11-15
AGI是什么意思?
AGI 即通用人工智能(Artificial General Intelligence),指能够像人类一样思考、学习和执行多种任务的人工智能系统。它可以做任何人类可以做的事。 Deepmind 的研究团队在去年十一月发表的论文《Levels of AGI》中,给 AGI 的定义提出了六个原则,其中最重要的一点是“关注能力,而非过程”,即应关注 AGI 能完成什么,而非它如何完成任务。AGI 的定义应包括多个级别,每个级别都有明确的度量标准和基准。 还有一个常见且较合理和可验证的定义:AGI 是一种自主系统,在大多数具有经济价值的工作中超越了人类的能力。例如 Sam Altman 常说的,用自动化来贡献 GDP。Andrej Karpathy 今年初在其博客上发表的《Selfdriving as a case study for AGI》(虽很快删除),全文用自动化的交通服务来类比 AGI 和它的经济价值。
2024-11-13
sd中的采样是什么意思
在 Stable Diffusion 中,采样(Sampling)指的是去噪过程。稳定扩散从随机高斯噪声起步,通过一步步降噪逐渐接近符合提示的图像。每一步都会产生一个新的样本图像,这种方法被称为采样器(Sampler)或采样(Sampling)。 不同的采样器具有不同的特点和效果,例如: Euler a 可以以较少的步数产生很大的多样性,不同的步数可能有不同的结果。 Euler 是最简单、最快的。 DDIM 收敛快,但效率相对较低,需要很多 step 才能获得好的结果,适合在重绘时候使用。 LMS 是 Euler 的衍生,使用一种相关但稍有不同的方法,大概 30 step 可以得到稳定结果。 PLMS 是 Euler 的衍生,可以更好地处理神经网络结构中的奇异性。 DPM2 旨在改进 DDIM,减少步骤以获得良好的结果,但速度较慢。 UniPC 效果较好且速度非常快,对平面、卡通的表现较好,推荐使用。 采样步数(Sampling Steps)也很重要,随着步数增多,可以得到对目标更小、更精确的图像,但增加步数会增加生成图像所需的时间,且增加步数的边际收益递减,一般开到 20 30 步。在实际应用中,如何选择采样器和设置采样步数可以按照模型作者的推荐进行。
2024-11-09
boosting 模型是什么意思
Boosting 模型是一种集成学习方法,主要包括以下两种常见类型: 1. Bagging(Bootstrap Aggregating):通过多次有放回抽样生成多个数据集,训练多个相同类型的模型(如决策树、多项式等),对于回归任务将多个模型的预测结果取平均,对于分类任务通过多数投票来决定最终的分类结果,以减少机器学习模型的方差,提高泛化能力。其核心步骤包括从原始数据集中有放回地抽取多个子集,每个子集用于训练一个独立的模型,最后集成这些模型的结果。 2. AdaBoost(Adaptive Boosting):主要用于分类问题,也可用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器的准确率仅略高于随机猜测,例如在二分类问题中可能略高于 50%。在 AdaBoost 中,强学习器通常是具有高准确率、能很好泛化到新数据的复杂模型,如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。 此外,在 Coze 上,GLM 模型和 MoonShot 模型因对结构化提示词的良好理解适合处理精确输入和输出任务,豆包系列模型在角色扮演和工具调用方面表现出色,将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2024-10-21
国内有适合做新媒体平台创意思路的ai软件,例如抖音、小红书等,
目前对于适合国内新媒体平台(如抖音、小红书等)创意思路的 AI 软件,还没有明确的定论。但我们可以先从内容创作的角度来思考。之前汉青老师分享时提到,生成式 AI 的内容与传统社交媒体内容共存,如小红书、抖音、微信等。短期内,大家可能因新鲜感获得流量红利,但最终人们在意的仍是高质量的内容。 我们虽掌握了各种先进工具,如在 MJ 里用关键词出图、用 SD 做复杂工作流、制作炫酷宣传片等,但在此我们先不讨论工具,而是专注于内容。让节奏慢下来,认真感受真实世界,关注身边通常被一扫而过的普通人。 比如偶然在朋友朋友圈刷到的题材:“这两张照片其实是在同一条街道上拍下的,只不过年轻的女孩在街上,孤独的老人在围墙里。”“这张照片传递两种关系、一种爱意,年轻人手牵着怀孕的爱人,老母亲扶着女儿坐上电动车,这应该是这个世界最稳固的两种关系,而现在他们相遇在一张照片当中。”“很多人把生活当中的便利,比如电商快递外卖速度快便宜看着是我们的移动互联网优势,其实唯一的优势是我们的劳动力,无数个在深夜独自啃着馒头的年轻人支撑着美团阿里的市值...放大镜头看你会发现这其实是一个非常年轻的女孩子,她瘦小,即使戴了头盔也比后面的箱子高不了多少,她进食的时候甚至都没玩手机——我骑车路上看到过很多快递小哥都是边骑车边刷短视频,这至少说明他们对生活中的乐子还充满期待,而图中的女孩看着让人垂头丧气,不仅是她,也包括我。” 关于如何与 AI 结合来为新媒体平台创作优质内容,目前还没想好,也没完全想明白,需要慢慢思考和探索。
2024-10-18