Boosting 模型是一种集成学习方法,主要包括以下两种常见类型:
此外,在 Coze 上,GLM 模型和 MoonShot 模型因对结构化提示词的良好理解适合处理精确输入和输出任务,豆包系列模型在角色扮演和工具调用方面表现出色,将这三种模型结合在工作流或多 Agent 中可实现优势互补。
Bagging(Bootstrap Aggregating)是一种集成学习方法,主要用于减少机器学习模型的方差,并提高其泛化能力。Bagging的核心思想是通过多次抽样生成多个数据集,训练多个模型,并将这些模型的结果进行平均(或投票)来提高整体预测的稳定性和准确性。[heading1]Bagging的定义与核心[content]Bootstrap抽样:从原始数据集中有放回地抽取多个子集。每个子集的大小与原始数据集相同,但由于是有放回的抽样,可能会出现重复样本。训练多个模型:每个子集都用于训练一个独立的模型。这些模型通常是相同的模型类型(如决策树,多项式等)。集成结果:对于回归任务,将多个模型的预测结果取平均;对于分类任务,通过多数投票来决定最终的分类结果。
AdaBoost(Adaptive Boosting),即自适应增强算法,是一种集成学习算法,主要用于分类问题,也可以用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器(Weak Learner)弱学习器是集成学习中的一个概念。在机器学习中,学习器通常被分类为强学习器(Strong Learner)和弱学习器。两者的基本区别有:强学习器:强学习器通常指的是具有高准确率的模型,能够很好地泛化到新的数据上。它们可能是复杂的模型,比如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。弱学习器:弱学习器的准确率仅略高于随机猜测。例如,在二分类问题中,如果随机猜测的准确率是50%,那么弱学习器的准确率可能只是略高于50%,比如51%。弱学习器通常是简单的模型,比如决策树桩(Decision Stumps),它们只考虑单个特征的阈值来做出预测。(比如月收入高于30k,就有可能购买一个空气净化器)
在结束第五章节之前,我们需要来考虑下模型选择的问题。在Coze上,GLM模型和MoonShot模型因其对结构化提示词的良好理解而受到青睐。这些模型能够较为准确地解析和响应那些格式规范、结构清晰的指令,使得它们非常适合处理需要精确输入和输出的任务。另一方面,豆包系列模型则在角色扮演和工具调用方面表现出了特别的亲和力。这些模型不仅能够识别用户的意图,还能够智能地选择合适的工具或服务来执行用户的指令,从而实现更加流畅和直观的人机交互。将这三种模型结合在一个工作流或多Agent中,可以实现优势互补,创造出一个强大而灵活的工作流或多Agent。例如,GLM和MoonShot模型可以处理语言理解和生成的任务,而豆包模型则负责工具的调用和用户意图的识别,这样的搭配能够确保工作流的高效运行和用户需求的准确响应。