直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

boosting 模型是什么意思

回答

Boosting 模型是一种集成学习方法,主要包括以下两种常见类型:

  1. Bagging(Bootstrap Aggregating):通过多次有放回抽样生成多个数据集,训练多个相同类型的模型(如决策树、多项式等),对于回归任务将多个模型的预测结果取平均,对于分类任务通过多数投票来决定最终的分类结果,以减少机器学习模型的方差,提高泛化能力。其核心步骤包括从原始数据集中有放回地抽取多个子集,每个子集用于训练一个独立的模型,最后集成这些模型的结果。
  2. AdaBoost(Adaptive Boosting):主要用于分类问题,也可用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器的准确率仅略高于随机猜测,例如在二分类问题中可能略高于 50%。在 AdaBoost 中,强学习器通常是具有高准确率、能很好泛化到新数据的复杂模型,如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。

此外,在 Coze 上,GLM 模型和 MoonShot 模型因对结构化提示词的良好理解适合处理精确输入和输出任务,豆包系列模型在角色扮演和工具调用方面表现出色,将这三种模型结合在工作流或多 Agent 中可实现优势互补。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

[算法学习] Bootstrap Aggregating 分类/回归

Bagging(Bootstrap Aggregating)是一种集成学习方法,主要用于减少机器学习模型的方差,并提高其泛化能力。Bagging的核心思想是通过多次抽样生成多个数据集,训练多个模型,并将这些模型的结果进行平均(或投票)来提高整体预测的稳定性和准确性。[heading1]Bagging的定义与核心[content]Bootstrap抽样:从原始数据集中有放回地抽取多个子集。每个子集的大小与原始数据集相同,但由于是有放回的抽样,可能会出现重复样本。训练多个模型:每个子集都用于训练一个独立的模型。这些模型通常是相同的模型类型(如决策树,多项式等)。集成结果:对于回归任务,将多个模型的预测结果取平均;对于分类任务,通过多数投票来决定最终的分类结果。

[算法学习] Adaptive Boosting 分类/回归

AdaBoost(Adaptive Boosting),即自适应增强算法,是一种集成学习算法,主要用于分类问题,也可以用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器(Weak Learner)弱学习器是集成学习中的一个概念。在机器学习中,学习器通常被分类为强学习器(Strong Learner)和弱学习器。两者的基本区别有:强学习器:强学习器通常指的是具有高准确率的模型,能够很好地泛化到新的数据上。它们可能是复杂的模型,比如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。弱学习器:弱学习器的准确率仅略高于随机猜测。例如,在二分类问题中,如果随机猜测的准确率是50%,那么弱学习器的准确率可能只是略高于50%,比如51%。弱学习器通常是简单的模型,比如决策树桩(Decision Stumps),它们只考虑单个特征的阈值来做出预测。(比如月收入高于30k,就有可能购买一个空气净化器)

蓝衣剑客:四万字长文带你通学扣子

在结束第五章节之前,我们需要来考虑下模型选择的问题。在Coze上,GLM模型和MoonShot模型因其对结构化提示词的良好理解而受到青睐。这些模型能够较为准确地解析和响应那些格式规范、结构清晰的指令,使得它们非常适合处理需要精确输入和输出的任务。另一方面,豆包系列模型则在角色扮演和工具调用方面表现出了特别的亲和力。这些模型不仅能够识别用户的意图,还能够智能地选择合适的工具或服务来执行用户的指令,从而实现更加流畅和直观的人机交互。将这三种模型结合在一个工作流或多Agent中,可以实现优势互补,创造出一个强大而灵活的工作流或多Agent。例如,GLM和MoonShot模型可以处理语言理解和生成的任务,而豆包模型则负责工具的调用和用户意图的识别,这样的搭配能够确保工作流的高效运行和用户需求的准确响应。

其他人在问
图片生成图片的AI模型有哪些
目前比较成熟的图片生成图片(图生图)的 AI 模型主要有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格供选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,一些受欢迎的文生图工具也可用于图生图,例如: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量的图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面设计而广受欢迎,在创意设计人群中尤其流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104),可以查看更多文生图工具。 关于图生图的操作方式:在相关工具的首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。例如在吐司网站,图生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。
2024-11-23
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
sft是什么意思
“SFT”可能有多种含义。在音乐领域,它可能指某种特定的音乐风格,如“Swift”指快速和敏捷的音乐风格,常用于表现快速和敏捷的情感,如 Taylor Swift 的《Shake It Off》;“Swirling”指旋转和流动的音乐风格;“Swooning”指陶醉和倾倒的音乐风格;“Syllabic”指音节和节奏的音乐风格;“Symbiotic”指共生和互助的音乐风格。 在语音处理方面,“SFT”可能指短时傅里叶变换(Shorttime Fourier Transform,STFT)。语音通常是短时平稳信号,在进行傅里叶变换前一般要进行分帧,取音频的小片段进行短时傅里叶变换。其结果是一个复数,包括幅度和相位信息。能量频谱是振幅频谱的平方,通过对频域信号进行逆傅里叶变换可恢复时域信号。离散傅里叶变换计算复杂度高,可采用快速傅里叶变换简化。在实际应用中,对语音信号分帧加窗处理,视为短时傅里叶变换。
2024-11-17
WAY TO AGI中AGI是什么意思?
AGI 指通用人工智能,也叫强人工智能。通常在其出现时会是奇点科技大爆炸的时刻,科技将推动文明呈指数级增长。虽然通往通用人工智能的道路可能还漫长,但它已如海风般逐渐临近。例如科幻作家刘慈欣所说“未来已来,像盛夏的大雨,在我们还不及撑开伞时就扑面而来”(很多人早就失业了)。
2024-11-15
AGI是什么意思?
AGI 即通用人工智能(Artificial General Intelligence),指能够像人类一样思考、学习和执行多种任务的人工智能系统。它可以做任何人类可以做的事。 Deepmind 的研究团队在去年十一月发表的论文《Levels of AGI》中,给 AGI 的定义提出了六个原则,其中最重要的一点是“关注能力,而非过程”,即应关注 AGI 能完成什么,而非它如何完成任务。AGI 的定义应包括多个级别,每个级别都有明确的度量标准和基准。 还有一个常见且较合理和可验证的定义:AGI 是一种自主系统,在大多数具有经济价值的工作中超越了人类的能力。例如 Sam Altman 常说的,用自动化来贡献 GDP。Andrej Karpathy 今年初在其博客上发表的《Selfdriving as a case study for AGI》(虽很快删除),全文用自动化的交通服务来类比 AGI 和它的经济价值。
2024-11-13
sd中的采样是什么意思
在 Stable Diffusion 中,采样(Sampling)指的是去噪过程。稳定扩散从随机高斯噪声起步,通过一步步降噪逐渐接近符合提示的图像。每一步都会产生一个新的样本图像,这种方法被称为采样器(Sampler)或采样(Sampling)。 不同的采样器具有不同的特点和效果,例如: Euler a 可以以较少的步数产生很大的多样性,不同的步数可能有不同的结果。 Euler 是最简单、最快的。 DDIM 收敛快,但效率相对较低,需要很多 step 才能获得好的结果,适合在重绘时候使用。 LMS 是 Euler 的衍生,使用一种相关但稍有不同的方法,大概 30 step 可以得到稳定结果。 PLMS 是 Euler 的衍生,可以更好地处理神经网络结构中的奇异性。 DPM2 旨在改进 DDIM,减少步骤以获得良好的结果,但速度较慢。 UniPC 效果较好且速度非常快,对平面、卡通的表现较好,推荐使用。 采样步数(Sampling Steps)也很重要,随着步数增多,可以得到对目标更小、更精确的图像,但增加步数会增加生成图像所需的时间,且增加步数的边际收益递减,一般开到 20 30 步。在实际应用中,如何选择采样器和设置采样步数可以按照模型作者的推荐进行。
2024-11-09
AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。做任何人类可以做的事,涵盖了广泛的认知技能和能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。在 2000 年代初,“通用人工智能”这一名词开始流行,以强调从“狭义 AI”到更广泛的智能概念的追求。但目前 AGI 还未取得巨大进展。
2024-11-02
国内有适合做新媒体平台创意思路的ai软件,例如抖音、小红书等,
目前对于适合国内新媒体平台(如抖音、小红书等)创意思路的 AI 软件,还没有明确的定论。但我们可以先从内容创作的角度来思考。之前汉青老师分享时提到,生成式 AI 的内容与传统社交媒体内容共存,如小红书、抖音、微信等。短期内,大家可能因新鲜感获得流量红利,但最终人们在意的仍是高质量的内容。 我们虽掌握了各种先进工具,如在 MJ 里用关键词出图、用 SD 做复杂工作流、制作炫酷宣传片等,但在此我们先不讨论工具,而是专注于内容。让节奏慢下来,认真感受真实世界,关注身边通常被一扫而过的普通人。 比如偶然在朋友朋友圈刷到的题材:“这两张照片其实是在同一条街道上拍下的,只不过年轻的女孩在街上,孤独的老人在围墙里。”“这张照片传递两种关系、一种爱意,年轻人手牵着怀孕的爱人,老母亲扶着女儿坐上电动车,这应该是这个世界最稳固的两种关系,而现在他们相遇在一张照片当中。”“很多人把生活当中的便利,比如电商快递外卖速度快便宜看着是我们的移动互联网优势,其实唯一的优势是我们的劳动力,无数个在深夜独自啃着馒头的年轻人支撑着美团阿里的市值...放大镜头看你会发现这其实是一个非常年轻的女孩子,她瘦小,即使戴了头盔也比后面的箱子高不了多少,她进食的时候甚至都没玩手机——我骑车路上看到过很多快递小哥都是边骑车边刷短视频,这至少说明他们对生活中的乐子还充满期待,而图中的女孩看着让人垂头丧气,不仅是她,也包括我。” 关于如何与 AI 结合来为新媒体平台创作优质内容,目前还没想好,也没完全想明白,需要慢慢思考和探索。
2024-10-18