直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

什么是深度学习

回答

深度学习是源于新方法和策略的概念,旨在克服梯度消失问题以生成深层非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流,足以训练深层结构。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。长短时记忆循环神经网络允许网络收集过去几百个时间步的活动以做出准确预测,自 2013 年以来其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。

Geoffrey Hinton 从高中时期就对大脑工作原理的相关理论着迷,并在求学期间继续对神经网络进行探索,经过三十多年的努力,将深度学习从边缘课题发展成为 Google 等网络巨头仰赖的核心技术。如今,包括 Hinton 在内的一些学者在互联网上大有名气,他们为各大公司使用深度学习技术改进相关工具做出了贡献。

此外,关于深度学习背后的深层数学,推荐 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》一书,该书可在 https://www.deeplearningbook.org/ 上获取。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

深度学习(1)核心概念

[title]深度学习(1)核心概念[heading2]核心概念[heading3]深度学习“深度学习”一词源于新的方法和策略,这些方法和策略旨在通过克服梯度消失的问题来生成这些深层的非线性特征层次,以便我们可以训练具有数十层非线性层次特征的体系结构。在2010年早期,有研究表明,结合GPUs和[激活函数](https://developer.nvidia.com/zh-cn/blog/deep-learning-nutshell-core-concepts/#activation-function)提供更好的梯度流,足以在没有重大困难的情况下训练深层结构。从这里开始,人们对深入学习的兴趣与日俱增。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。虽然大多数其他处理顺序数据的算法只有最后10个时间步的内存,[长短时记忆](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#LSTM)[循环神经网络](https://developer.nvidia.com/blog/parallelforall/deep-learning-nutshell-sequence-learning#recurrent-neural-networks)(由Sepp Hochreiter和J ü rgen-Schmidhuber在1997年发明)允许网络收集过去几百个时间步的活动,从而做出准确的预测。虽然LSTM网络在过去10年中大多被忽视,但自2013年以来,LSTM网络的使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。

微软AI初学者入门课程

[title]微软AI初学者入门课程特定的机器学习云框架。例如[Azure Machine Learning](https://azure.microsoft.com/services/machine-learning/?WT.mc_id=academic-77998-cacaste),[Microsoft Fabric](https://learn.microsoft.com/en-us/training/paths/get-started-fabric/?WT.mc_id=academic-77998-bethanycheum),或[Azure Databricks](https://docs.microsoft.com/learn/paths/data-engineer-azure-databricks?WT.mc_id=academic-77998-cacaste)。如有需要,考虑以下课程:《[使用Azure Machine Learning构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/explore-azure-machine-learning-workspace/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure Databricks构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/build-operate-machine-learning-solutions-azure-databricks/?WT.mc_id=academic-77998-cacaste)》。对话式人工智能和聊天机器人。这方面有一个单独的课程《[创建对话式人工智能解决方案](https://learn.microsoft.com/en-us/training/paths/create-conversational-ai-solutions/?WT.mc_id=academic-77998-cacaste)》,你也可以参考[这篇博文](https://soshnikov.com/azure/hello-bot-conversational-ai-on-microsoft-platform/)了解更多详情。深度学习背后的深层数学(Deep Mathematics)。关于这一点,我们推荐Ian Goodfellow、Yoshua Bengio和Aaron Courville合著的《深度学习》(Deep Learning)一书,该书可在https://www.deeplearningbook.org/上获取。

Geoffrey Hinton 是这个人,一步步把“深度学习”从边缘课题变成Google等网络巨头仰赖的核心技术

[title]Geoffrey Hinton是这个人,一步步把“深度学习”从边缘课题变成Google等网络巨头仰赖的核心技术王晨推荐早在1960年代,Geoffrey Hinton的高中时期,就有一个朋友告诉他,人脑的工作原理就像全息图一样。创建一个3D全息图,需要大量的记录入射光被物体多次反射的结果,然后将这些信息存储进一个庞大的数据库中。大脑储存信息的方式居然与全息图如此类似,大脑并非将记忆储存在一个特定的地方,而是在整个神经网络里传播。Hinton为此深深的着迷。对Hinton来说,这是他人生的关键,也是他成功的起点。“我非常兴奋,”他回忆到,“那是我第一次真正认识到大脑是如何工作的”。在高中时代谈话的鼓舞之下,Hinton在他的求学期间,在剑桥大学以及爱丁堡大学继续他的神经网络的探索。在80年代早期,他就参与了一个雄心勃勃的关于使用计算机的软硬件来模拟大脑的研究,这形成了早期的AI的一个分支,也就是我们现在所说的“深度学习”。三十多年的努力,深度学习已成为学术界炙手可热的课题。现如今,Hinton和他的深度学习小团队,包括纽约大学的Yann LeCun教授,蒙特利尔大学的Yoshua Bengio教授,在互联网上已然大有名气。作为多伦多大学的教授和研究员,Hinton也同时为Google工作,使用深度学习技术来改进语音识别,图像标记和其他在线工具。LeCun也在Facebook从事类似的工作。AI风靡全球,微软,IBM,百度和许多网络巨头都为之着迷。在剑桥大学的心理学专业的本科学习当中,Hinton发现,科学家们并没有真正理解大脑。人类大脑有数十亿个神经细胞,它们之间通过神经突触相互影响,形成极其复杂的相互联系。然而科学家们并不能解释这些具体的影响和联系。神经到底是如何进行学习以及计算的,对于Hinton,这些正是他所关心的问题。

其他人在问
多模态AI是什么,和深度学习的关系
多模态 AI 是指能够处理和生成多种数据类型(如文本、图像、音频、视频等)交互的人工智能技术,从而能够提供更接近人类感知的场景。 多模态 AI 与深度学习有着密切的关系。在深度学习时期,深度神经网络等技术的发展为多模态 AI 提供了基础。当前,多模态 AI 是 AI 领域的前沿技术之一。 多模态 AI 具有以下特点和应用: 1. 能够无缝地处理和生成多种音频或视觉格式的内容,将交互扩展到超越语言的领域。 2. 像 GPT4、Character.AI 和 Meta 的 ImageBind 等模型已经能够处理和生成图像、音频等模态,但能力还比较基础,不过进展迅速。 3. 多模态模型可以为消费者提供更加引人入胜、连贯和全面的体验,使用户能够超越聊天界面进行互动。 4. 多模态与工具使用密切相关,能够使用设计给人类使用但没有自定义集成的工具。 5. 从长远来看,多模态(特别是与计算机视觉的集成)可以通过机器人、自动驾驶车辆等应用程序,将大语言模型扩展到物理现实中。
2024-10-28
神经网络和深度学习简史
神经网络和深度学习有着丰富的发展历史: 1. 1958 年感知机神经网络诞生。 2. 70 年代经历了人工智能寒冬。 3. 1986 年 BP 算法让神经网络再度流行。 4. 尽管取得了一些成功,但在人工智能寒冬期间,用于神经网络研究的资金很少,人工智能一词近乎成为伪科学的代名词。 5. 1997 年,Hochreiter 和 Schmidhuber 为递归神经网络开发了长短期记忆(LSTM),但在当时被忽视。 6. 随着计算机变得更快和图形处理单元(GPU)的引入,神经网络逐渐与支持向量机相竞争。 7. 训练大型、深层网络存在梯度消失问题,解决方法包括逐层预训练,如 Schmidhuber 于 1992 年为递归神经网络开发的预训练方法,以及 Hinton 和 Salakhutdinov 于 2006 年为前馈网络开发的预训练方法。1997 年提出的长短期记忆(LSTM)也是解决递归神经网络中梯度消失问题的方案之一。
2024-10-23
深度研究学习ai 好呢 还是学习怎么使用ai 好呢
对于您提出的是深度研究学习 AI 好还是学习如何使用 AI 好的问题,以下是一些建议: 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-10-17
ai生成类产品的深度学习路径
以下是关于 AI 生成类产品的深度学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,您还可以通过以下课程深入学习: 谷歌生成式 AI 课程:此学习路径将引导您完成有关生成式 AI 产品和技术的精选内容集合,从大型语言模型的基础知识,到如何在 Google Cloud 上创建和部署生成式 AI 解决方案。链接:https://www.cloudskillsboost.google/journeys/118 。 【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐): 视频一主要回答了什么是 AI 大模型,原理是什么。 概念:生成式 AI 生成的内容,叫做 AIGC 。 概念与关系:相关技术名词: AI——人工智能 。 机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习 。 监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归 。 无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组 。 强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗 。 深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习 。 生成式 AI——可以生成文本、图片、音频、视频等内容形式 。 LLM——大语言模型。对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类 。 技术里程碑——2017 年 6 月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 含义:Transformer 是关键。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-10-10
我是一个程序员,我想快速且有一点深度的重头梳理AGI的原理与自定义AGI应用的开发流程与方法, 请帮我梳理一下AGI学习的路线
以下是为您梳理的 AGI 学习路线: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 学习路径方面: 关键词:少就是多、先有个初识、目录索引推荐、兴趣最重要、先动手。 学习路径如同主线+支线的游戏通关。 学以致用,通过学习分享不断填补知识的缝隙来成长。 4. 分类学习方面: 对 AI 学习路径进行了重构,分为了初学者、面向开发应用者、面向使用模型者三个部分。 将课程目录从文章中单独独立出来,并按照初学者、进阶者进行分类。 同时,还可以参考以下个人心得: YoYo 作为文科生,在学习前不理解 AI 和提示词工程,通过不断尝试各种 AI 工具,走了不少弯路。学习后能够搓多 Agent 的智能体,进行营销文案 demo、SQL 代码进阶学习应用,创建多个智能体,并在公司中实践智能客服从创建到应用的过程。 希望以上内容对您有所帮助。
2024-10-08
什么事深度学习
深度学习是指一种通过新的方法和策略来克服梯度消失问题,从而生成深层非线性特征层次的学习方式。 在深度学习出现之前,分层特征学习虽已存在,但面临梯度消失等问题,导致性能较差。2010 年早期的研究表明,结合 GPU 和激活函数能提供更好的梯度流,从而能够训练深层结构,此后人们对深度学习的兴趣日益增加。 Genie 模型通过观看互联网上的大量视频进行学习,并运用深度学习技术分析学习到的内容,找出规律和联系,从而能够根据给定的提示创造出全新的虚拟世界。 在强化学习中,智能体在给定状态下执行动作,以获得最大可能的奖励。为简化问题和解决方案,通常会简化环境,使智能体只了解对决策重要的细节。整个学习过程就是探索环境和经过各种状态,尝试最大化所得到的奖励,直至达到目标状态。
2024-09-21
普通人学习AI有哪些好处
以下是普通人学习 AI 的一些好处: 有助于在医疗保健领域带来改变,例如医生可将文档工作交给 AI 书记员,初级医疗服务提供者可依赖聊天机器人进行分诊,加速药物开发等。 能够为在特定领域成为顶尖人才打下基础,像医学领域,需要多年的密集信息输入和实践学习,AI 学习也类似。 可以培养处理复杂情况和细微差别的决策直觉,例如在分子层面的差别处理。 了解 AI 如何在没有直接从人类获取数据的情况下,通过观察来学习和模仿人类行为,这被视为向人工通用智能迈进的一步。 需要注意的是,以上内容是基于提供的资料进行的总结和整理。
2024-11-01
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-31
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
AI 可以帮助我学习并理解统计学的相关概念和公式吗
AI 可以帮助您学习并理解统计学的相关概念和公式。以下是一些相关方面: 数学基础中的统计学基础部分,您可以熟悉均值、中位数、方差等统计概念。 在算法和模型方面,监督学习、无监督学习和强化学习等领域的知识也可能涉及到统计学的应用。 对于模型的评估和调优,例如了解如何评估模型性能,包括交叉验证、精确度、召回率等,也与统计学有一定的关联。 通过学习这些内容,能够为您理解统计学的相关概念和公式提供帮助。
2024-10-31
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 五、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习,可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-30
在WaytoAGI如何从0开始学习AI
对于在 WaytoAGI 中从 0 开始学习 AI,以下是一些建议: 1. 学习 AI 是一个长期的过程,需要耐心和持续的努力,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。 2. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 3. 为您推荐【野菩萨的 AIGC 资深课】,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识,无论您是 AI 初学者还是进阶者,都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。 需要注意的是,开源社区资源丰富,适合自律的自主学习者,而知识付费课程能提供系统结构、专业指导、针对性计划和互动反馈,是一种高效的学习途径,您可以根据自身情况选择适合自己的学习方式。
2024-10-30