Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Azure是什么

Answer

Azure 是微软提供的一系列云计算服务和平台。它涵盖了多个方面,包括但不限于以下内容:

  • 认知服务:用于创建实用的人工智能应用,如视觉、自然语言处理等。
  • 特定的机器学习云框架,如 Azure Machine Learning、Microsoft Fabric、Azure Databricks 等,可用于构建和运行机器学习解决方案。
  • 在人工智能的商业应用方面也有相关课程和资源。
Content generated by AI large model, please carefully verify (powered by aily)

References

第2期:蓝色

[title]第2期:蓝色本期作者:[@ZayG](https://www.xiaohongshu.com/user/profile/5e395f550000000001000824)小红书原文链接:http://xhslink.com/deLeFF蓝色是一种令人平静的颜色。给人以沉着、稳重的气质感受它常常引起人类深远的情感和想象。从广阔的天空到深邃的海洋,蓝色展现了自然中的无限广袤和静谧。在艺术和文学中,蓝色常常被用来表达对未知、对超越、对精神追求的向往和探索。今天我们来谈谈Midjourney中关于“蓝色”的表达方式更为精确的色彩描述Navy(海军蓝色)Indigo(靛蓝色)Azure(天蓝色)蓝色也被广泛运用在流行文化和影视角色的设计中Sonic索尼克、Doraemon哆啦A梦Donald Duck唐老鸭、Gundam高达

微软AI初学者入门课程

[title]微软AI初学者入门课程人工智能的商业应用案例。如需要了解这方面的信息,可以考虑学习以下两个微软的课程:《[面向商业用户的人工智能学习](https://learn.microsoft.com/en-us/training/paths/introduction-ai-for-business-users/?WT.mc_id=academic-77998-cacaste)》、《[人工智能商学院](https://learn.microsoft.com/en-us/training/paths/transform-your-business-with-microsoft-ai/)》(和欧洲工商管理学院INSEAD共同开发)。经典机器学习。这在我们的《[机器学习入门课程](https://github.com/Microsoft/ML-for-Beginners)》中有详细介绍。使用Azure认知服务(Azure Cognitive Services)来创建实用的人工智能应用。如有需要,我们建议你从以下微软课程开始学习:《[视觉](https://learn.microsoft.com/en-us/training/paths/create-computer-vision-solutions-azure-ai/?WT.mc_id=academic-77998-cacaste)》、《[自然语言处理](https://learn.microsoft.com/en-us/training/paths/explore-natural-language-processing/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure OpenAI服务的生成式人工智能](https://learn.microsoft.com/en-us/training/paths/develop-ai-solutions-azure-openai/?WT.mc_id=academic-77998-bethanycheum)》等。

微软AI初学者入门课程

[title]微软AI初学者入门课程特定的机器学习云框架。例如[Azure Machine Learning](https://azure.microsoft.com/services/machine-learning/?WT.mc_id=academic-77998-cacaste),[Microsoft Fabric](https://learn.microsoft.com/en-us/training/paths/get-started-fabric/?WT.mc_id=academic-77998-bethanycheum),或[Azure Databricks](https://docs.microsoft.com/learn/paths/data-engineer-azure-databricks?WT.mc_id=academic-77998-cacaste)。如有需要,考虑以下课程:《[使用Azure Machine Learning构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/explore-azure-machine-learning-workspace/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure Databricks构建和运行机器学习解决方案](https://learn.microsoft.com/en-us/training/paths/build-operate-machine-learning-solutions-azure-databricks/?WT.mc_id=academic-77998-cacaste)》。对话式人工智能和聊天机器人。这方面有一个单独的课程《[创建对话式人工智能解决方案](https://learn.microsoft.com/en-us/training/paths/create-conversational-ai-solutions/?WT.mc_id=academic-77998-cacaste)》,你也可以参考[这篇博文](https://soshnikov.com/azure/hello-bot-conversational-ai-on-microsoft-platform/)了解更多详情。深度学习背后的深层数学(Deep Mathematics)。关于这一点,我们推荐Ian Goodfellow、Yoshua Bengio和Aaron Courville合著的《深度学习》(Deep Learning)一书,该书可在https://www.deeplearningbook.org/上获取。

Others are asking
training course of Microsoft Azure
微软 AI 初学者入门课程不包括以下内容: 1. 人工智能的商业应用案例。如需要了解这方面的信息,可以考虑学习以下两个微软的课程:《》(和欧洲工商管理学院 INSEAD 共同开发)。 2. 经典机器学习。这在我们的《》中有详细介绍。 3. 使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用。如有需要,我们建议你从以下微软课程开始学习:《》等。 特定的机器学习云框架,例如》。 对话式人工智能和聊天机器人。这方面有一个单独的课程《了解更多详情。 深度学习背后的深层数学(Deep Mathematics)。关于这一点,我们推荐 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/ 上获取。 如需了解云计算中的人工智能主题,可以考虑参加《》课程。
2024-09-02
关于azure的申请,创建实例的时候选择哪一个区域?
选择Azure(微软的云计算服务平台)的区域(Region)时,应考虑以下几个因素: 1. 地理位置:选择最靠近目标用户的区域,以减少延迟并提高应用程序的响应速度。 2. 合规性要求:如果业务需要遵守特定国家或地区的数据保护法规,应选择该地区的数据中心。 3. 服务可用性:某些Azure服务可能只在特定的区域中提供。确保所需的服务在所选区域可用。 4. 成本效益:不同区域的定价可能有所不同,可以根据成本效益进行选择。 5. 冗余和备份:如果业务需要跨区域的冗余,可以考虑选择一个区域作为主数据中心,另一个作为备份。 6. 数据中心的可靠性:了解不同区域数据中心的可靠性和性能记录。 7. 未来发展:考虑业务扩展的可能性,选择一个能够支持未来增长的区域。 8. 网络连接:如果需要与其他云服务或本地数据中心连接,选择一个提供最佳网络连接的区域。 9. 市场接近度:如果服务面向特定市场,选择一个靠近该市场的区域可以提高服务质量。 10. Azure状态:查看Azure状态页面,了解不同区域的当前状态和历史性能。 通常,Azure平台会提供一个界面,允许用户根据上述因素选择最合适的区域。如果没有特定要求,可以选择默认推荐或者最常用的区域,如“西欧”、“东美国”或“东南亚”等。在创建实例之前,最好先在Azure官网上查看最新的服务可用性和区域信息。
2024-04-18