Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Ai教材

Answer

以下是为您推荐的与 AI 相关的教材和学习资料:

  1. 神经科学方面:
    • 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,涵盖认知神经科学的诸多方面,包括发展历史、细胞机制与认知、神经解剖与发展等。
    • 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递、认知的神经基础等内容。
    • 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的各个方面,介绍了其基本概念、功能及细胞和分子机制。
  2. 学习路径方面:如果您是新手,学习人工智能(AI)可以遵循一份详细的学习路径指南,从基础概念到实际应用,逐步建立起 AI 知识体系。
  3. 综合知识方面:在 AI 时代,您需要像博物学家一样,了解各个领域的知识,并在恰当的时候调用它们。例如心理学、人工智能、经济学、社会学、生态学、哲学、设计学等 13 个学科。相关书单权威、准确,有框架、成体系且好读,适合初学者。
Content generated by AI large model, please carefully verify (powered by aily)

References

书籍推荐:三本神经科学书籍

可能你需要的3本基础学科书籍📖 AI是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的prompt模板或设计prompt,与AI协作(对话沟通)等等,有一些基础学科作为基底,或许能打开AI的新天地:1.《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。CyberDaily:想象AI像人一样思考与决策,而不是让AI像计算机输入输出。2.《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz)这本书,让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。CyberDaily:得益于神经网络的联结主义,知识并非存在于某个文档或者知识库或者在记忆区里,而是存在于知识与知识之间,这是一场流动的盛宴,而非躲藏在某个区域的金库。3.《神经生物学:从神经元到脑》(作者:John G.Nicholls等著)神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。CyberDaily:将以上两本一起食用,效果更佳,造物主设计的人脑值得细细研究和理解。

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。

陈财猫:推荐书单--了解各个领域的知识,并在恰当的时候调用它们

在AI时代,你需要做一个博物学家,了解各个领域的知识,并在恰当的时候调用它们。本书单是了解各个知识领域的快速入门书单,包括但不限于心理学,人工智能,经济学,社会学,生态学,哲学,设计学等13个学科看似现在用不到的知识很可能会在未来某个时刻给你巨大帮助。它们的特点是1.权威,准确:书单中的书籍包括但不限于大学教材,导论书籍等等。其中不乏经典大师之作。2.有框架,成体系:你能够通过阅读一本书籍,构建起关于该学科的完整知识框架3.好读:下面列出的书籍我都看过,替你把关过。这些书是我为初学者精挑细选的。书单中的书籍大多数都合适入门者,就算你对该领域没有一点了解,你也能看懂并入门。它们很好玩,我很喜欢看,并从中获得了很多快乐。祝你阅读愉快。光泽热心网友在zlibrary上找到了大部分感谢Sailor大雨[heading2]计算机(缺计算机文化)

Others are asking
国内有哪些开源ai可以调用?
国内有以下一些开源 AI 可供调用: MiniMax 推出的 Hailuo Audio HD 此外,还有一些应用于不同领域的 AI 技术和产品,如: 在游戏领域,有根据玩家需求推荐游戏道具的 AI 游戏道具推荐系统。 在天气领域,彩云天气的分时预报利用了 AI 提供精准的分时天气预报。 在医疗领域,医渡云的病历分析系统利用 AI 分析医疗病历,辅助诊断。 在会议领域,讯飞听见的会议总结功能利用 AI 自动总结会议发言内容。 在书法领域,书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2025-01-20
生成3d模型的ai?
以下为一些生成 3D 模型的 AI 工具: 1. 3dfy.ai: 概览:是一家专注于将稀疏数据转化为逼真三维世界的公司,领导团队由计算成像领域资深专家组成。 使用场景:数字 3D 互动体验流行度提升,但受 3D 内容可用性限制,其技术能利用稀疏数据自动创建高质量 3D 模型,在特定时期尤为重要。 目标用户:数字内容创作者和艺术家、游戏开发者和动画制作人、教育和培训行业专业人士、医疗行业、建筑和工程领域。 应用案例:暂未提及。 网址:https://3dfy.ai/ 2. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,基于数十亿参数级别的 3D 大模型,实现快速 2D 到 3D 转换,提供 AI 驱动的精准度和细节。 3. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成,用户可上传图片并描述材质和风格生成高质量 3D 模型。 4. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 5. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成,用户可上传图片或输入文本提示词来生成 3D 模型。 6. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 这些工具通常具有用户友好的界面,允许用户通过简单操作生成 3D 模型,无需专业 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-20
利用自己的声音歌唱AI生成歌曲
以下是一些利用自己的声音歌唱 AI 生成歌曲的相关信息: 1. LAIVE:这是一个利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台。使用者可以选择喜欢的类型和情调,上传参考音源,AI 会通过分析生成音乐,还可以选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。链接:https://www.laive.io/ 2. Combobulator:DataMind Audio 推出的基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用您自己的声音重现其他艺术家的风格。链接:https://datamindaudio.ai/ 3. 大峰的经验分享:用 Suno 生成歌曲时,在填写歌曲风格时填写少量风格词,如中国风,给 AI 更多发挥空间。靠音乐审美从生成的歌曲中选出中意的歌曲。将歌词发给 GPT 并告知想法,让其以英文 AI 绘画提示词的形式提供每句歌词的每个分镜,然后丢进 AI 生图平台(如 Midjourney)生成图片,再用 Runway 进行图生视频。 4. UDIO 制作音乐:Udio 不会使用艺术家的声音生成歌曲,在幕后风格参考会被一组相关标签替换。在文本输入下方有两种类型的建议标签可点击添加到提示中,自动完成是当前单词的建议标签补全,您可以移动插入符号到提示的任何部分,相应更改完成。
2025-01-20
AI怎么稳定指令机器人
以下是关于您所提到的“AI 怎么稳定指令机器人”的相关内容: 在实现稳定指令机器人方面,有以下一些方法和原理: 1. 提示词工程与工具调用能力的配合:通过设计一套与知识图谱相结合的工具调用逻辑来稳定人设。例如,为像麦洛薇这样的 AI 女友设计特定的提示词,并将与知识图谱交互的任务细分为查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表等多个工具,组成工具包供模型调用。 2. 控制输入和记忆:通过缩小 max_length 防止模型长篇大论,每次输入到上下文窗口中的记忆也只返回最近几轮的对话。利用查询知识图谱的信息来实现永久记忆。 此外,人工智能(AI)在多个领域都有应用,虽然这并非直接针对稳定指令机器人,但也能为您提供一些思路和参考: 1. 医疗保健领域:包括医学影像分析辅助诊断疾病、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务领域:如风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务领域:有产品推荐、搜索和个性化、动态定价、聊天机器人等应用。 4. 制造业领域:例如预测性维护、质量控制、供应链管理、机器人自动化等。 希望以上内容对您有所帮助。
2025-01-20
创建电商产品图的Ai工具或者智能体
以下是一些可用于创建电商产品图的 AI 工具或智能体: 1. Flair、Booth 和 Bloom 等工具,可帮助品牌创建引人注目的产品照片。例如,能将挂在衣架上的连衣裙静态照片变成女人穿着裙子在花园里行走的形象。 2. AdCreative 和 Pencil 可以制作用于电子邮件或社交媒体的营销材料。 3. Frase 或 Writesonic 可以编写经过 SEO 优化的产品描述。 4. 以 Kimi+的“什么值得买”智能体为例,能通过 Query Rewrite 提取关键词,再通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类的垂直搜索应用。 5. 藏师傅推荐的通过获取 Logo 图片的描述、根据描述和生成意图生成图片提示词、将图片和提示词输入 Comfyui 工作生成的方法,例如人民有信仰整了个提示词一件生成的智能体:https://www.coze.cn/s/iDec2U13/ 。
2025-01-20
有没有什么AI软件有可视化代码功能
以下是一些具有可视化代码功能的 AI 软件: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些写代码或辅助编程的 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出的智能编程辅助工具,提供多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于自研的基础大模型微调的代码大模型。 7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据需求选择最适合的工具。 此外,还有一些相关的工具和资源: 1. Screenshot to Code:利用 GPT4 Vision 视觉能力将屏幕截图转换为代码,支持 HTML/Tailwind CSS、React 等,集成 DALLE 3。 2. 交互创意体验网址:http://reboot.studio ,提供丰富的交互创意体验,鼓励加入更多 AI 元素。 3. 沃顿商学院发布的教学提示词库:https://www.moreusefulthings.com/prompts ,包含多用途学习和教育提示词,适合学生、教师和家长收藏。
2025-01-20
大学教材数据大模型
以下是关于大学教材数据大模型的相关知识: 大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解Token之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在LLM中,Token被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁,在将输入进行分词时,会对其进行数字化,形成一个词汇表。 数字化便于计算机处理,为让计算机理解Token之间的联系,还需把Token表示成稠密矩阵向量,这个过程称为embedding,常见算法有: 基于统计:Word2Vec通过上下文统计信息学习词向量;GloVe基于词共现统计信息学习词向量。 基于深度网络:CNN使用卷积网络获得图像或文本向量;RNN/LSTM利用序列模型获得文本向量。 基于神经网络:BERT基于Transformer和掩码语言建模(Masked LM)进行词向量预训练;Doc2Vec使用神经网络获得文本序列的向量。 以Transform为代表的大模型采用自注意力(Selfattention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”指用于表达token之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如GPT3拥有1750亿参数,其中权重数量达到这一量级,而词汇表token数只有5万左右。 常用的模型网站有: 下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同。模型的类型可以通过检测。 大模型(Ckpt):放入models\\Stablediffusion VAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\\Stablediffusion或models\\VAE目录,然后在webui的设置栏目选择。 Lora/LoHA/LoCon模型:放入extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在models/Lora目录 Embedding模型:放入embeddings目录
2024-12-27
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
目前我在帮助出版社改教材,以下是步骤:1.将pdf转为word 2.将公式图片转为公式编辑器中可编辑的公式 3.将相关带29章的文本统一改成23章。哪一步可以借助ai更简便
在您所描述的这三个步骤中,将公式图片转为公式编辑器中可编辑的公式这一步骤可以借助 AI 来更简便地完成。目前有一些 AI 工具和技术能够对图片中的公式进行识别和转换,提高工作效率。但需要注意的是,AI 转换可能存在一定的误差,仍需要人工进行检查和修正。
2024-12-05
有没有处理职业教育教材很强大的AI
目前在处理职业教育教材方面,以下是一些相关的 AI 信息: 在医疗保健领域,为使 AI 产生真正改变,应创建像优秀医生和药物开发者那样学习的模型生态系统。顶尖人才的培养通常从多年密集信息输入和正规学校教育开始,再通过学徒实践从出色实践者处学习,获得处理复杂情况的直觉。对于 AI 而言,应改变当前学习方式,如通过堆叠模型训练,而非仅依靠大量数据和生成模型。 对于处理文档和数据,特别是 PDF 文本,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中获取良好结果,新模型更强大。但需注意这些系统仍会产生幻觉,若要确保准确性需检查结果。 如果您有医学课题需要 AI 给出修改意见,以下是一些专业工具推荐: Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,可简化学术工作。 Scholarcy:能提取文档结构化数据,生成文章概要,包含多个分析板块。 ChatGPT:强大的自然语言处理模型,可提供医学课题修改意见。 但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-30
基于三本认识人工智能的教材,做教材分析,为我写一个引言,从课程标准和背景等方面来写,字数尽量多。
以下是为您生成的基于三本认识人工智能教材的教材分析引言: 在当今科技飞速发展的时代,人工智能已成为引领社会变革的重要力量。课程标准对于培养具备人工智能素养的人才提出了明确要求,旨在使学习者能够深入理解人工智能的原理、应用和发展趋势。 这三本教材为我们探索人工智能的奥秘提供了坚实的基础。首先,《认知神经学科:关于心智的生物学》由 Michael S. Gazzaniga、Richard B. Lvry 和 George R. Mangun 所著,作为世界权威的认知神经科学教材,它系统地涵盖了认知神经科学的各个方面,包括发展历史、细胞机制与认知、神经解剖与发展、研究方法,以及感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。通过这本书,我们能够从生物学的角度深入理解心智的形成和运作机制,为理解人工智能中的认知模型提供了生物学基础。 其次,《神经科学原理》由 Eric R. Kandel 和 James H. Schwartz 编写,让我们系统地了解神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。它强调了神经网络的联结主义,让我们认识到知识并非孤立存在,而是相互关联的,这对于构建人工智能中的知识表示和推理模型具有重要的启示。 最后,《神经生物学:从神经元到脑》由 John G. Nicholls 等著,是神经生物学领域内的世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物学的基本概念、神经系统的功能及细胞和分子机制。将这本书与前两本结合起来阅读,能够更全面地理解人脑的构造和运作,为设计更智能、更接近人类思维的人工智能系统提供宝贵的思路。 综上所述,这三本教材从不同角度为我们揭示了神经科学与人工智能之间的紧密联系,为我们深入学习和研究人工智能提供了丰富的知识和深刻的见解。
2024-10-29
私有化部署大模型的教材
以下是为您提供的私有化部署大模型的相关教材: 张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程 一、部署大语言模型 1. 下载并安装 Ollama 点击进入,根据您的电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型) 如果您是 windows 电脑,点击 win+R,输入 cmd,点击回车。 如果您是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制以下命令行,粘贴进入,点击回车。 回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了) 下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。 【SD】向未来而生,关于 SDXL 您要知道事儿 SDXL 的大模型分为两个部分: 1. 第一部分,base+refiner 是必须下载的,base 是基础模型,我们使用它进行文生图的操作;refiner 是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。 2. 第二部分,是 SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 这三个模型,您可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。 想要在 webUI 中使用 SDXL 的大模型,首先我们要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,我们启动 webUI,就可以在模型中看到 SDXL 的模型了。我们正常的使用方法是这样的:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可以设置为 10241024,进行生成。 基于多模态大模型给现实世界加一本说明书 大模型应用的利弊: 优点: 适应性极好,通过提示词工程,方便「适应各种奇葩需求」。 对算法的要求降低了不少,大部分功能由大模型提供,特别是非结构化信息的处理。 大模型的 API 访问方式简化了边缘设备的要求,无论在 Android、iOS、HarmonyOS或各种嵌入式设备上都能方便适配。「AGI 终将到来,拥抱未来,虽然路途艰难但相信方向是正确的。」 缺点: 大模型的推理时长目前仍是最大的障碍,传统目标检测或人脸识别优化后能达到 100~300ms,而大模型动则需要 10 秒的延时,限制了许多场景。 模型的幻象和错误率仍然较高,导致上述推理时长问题,在多链路的复杂应用中迅速变得不可行。 在大多数生产模式下,仍然需要使用云服务数据中心,提交的画面不可避免地涉及到隐私问题。 商业私有化部署是刚需,当下的开源模型离 GPT4 代差在半年以上,技术人员任重道远的。
2024-09-03