直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

建立Agent

回答

以下是一些常见的 Agent 构建平台及相关信息:

  1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。
  2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。
  3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者打造产品能力。
  4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。
  5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。
  6. 钉钉 AI 超级助理:依托钉钉强大场景和数据优势,在处理高频工作场景表现出色。

使用扣子 coze.cn 等平台创建智能体 Agent 的过程被创作者形象地比喻为“捏 Bot”,最简单的 Bot 往往 1 分钟内可完成。常见 Bot 有讲故事、减肥提醒、生成 PPT、真假新闻辨识、新闻资讯收集、扮演“甄嬛”等。国内外有多个可在几分钟内完成 Agent 创建的平台,如国内版扣子 coze.cn、海外版 Coze coze.com、百度 AppBuilder、阿里通义千问、智谱 AI 等,可先从扣子 coze.cn 开始。

AgentSims 是国产斯坦福 AI 小镇,在其框架中:

  • command 文件夹下包含所有对外接口,每个接口类实现 execute 方法作为 handler,有关键方法与接口。
  • 系统中有预设的 Agent 样例可选择,初始化沙箱世界时会选默认模板。
  • 游戏界面提供自行创建 Agent 的选项,可选择外观、名字、LLM、记忆系统、计划系统、最终目标、人物特征等,创建后信息保存到 mysql 中,后续可复用,系统宕机也可从数据库进行恢复。

以上信息由 AI 大模型生成,请仔细甄别,您可以根据自己的需求选择适合的平台进行进一步探索和应用。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:有哪些好的Agent构建平台

[title]问:有哪些好的Agent构建平台以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别

1. 从案例入门

找三思做二十四节气海报https://www.coze.cn/store/bot/7382246186440359945作者:七个小扣子团队(一分钟捏的Bot)第一个Bothttps://www.coze.cn/store/bot/7386486483391234057作者:吕昭波[捏剧本-离谱村专用](https://www.coze.cn/store/bot/7374263128143708198)https://www.coze.cn/store/bot/7367669913697239052作者:Stuart

AgentSims | 国产斯坦福AI小镇——框架详解篇

系统中有预设的Agent样例可以选择,初始化沙箱世界时会选择默认模板在游戏界面提供了自行创建Agent的选项,可以选择外观、名字、LLM、记忆系统、计划系统、最终目标、人物特征等等,点击创建后信息会被保存到mysql中,后续可以进行复用,系统宕机也可从[数据库](https://cloud.tencent.com/solution/database?from_column=20065&from=20065)进行恢复

其他人在问
传统的agent是怎么定义的
传统的 agent 定义如下: 在古希腊哲学中,对“行动者”(Agent)的探讨深刻影响了后世对道德责任和个体决策的理解。尽管当时未使用现代意义的“Agent”术语,苏格拉底、柏拉图和亚里士多德等哲学家已为其奠定基础。 亚里士多德在《尼各马科伦理学》中探讨德性伦理学,认为人的善良和幸福源自由理性和智慧引导的德性生活,区分了“被动行为”与“主动行为”,强调有道德价值的行为应是个体自愿且有明确意图的选择,个体作为行动者不仅要靠理性指导行为,还要对自愿行为承担道德责任。 苏格拉底通过独特对话法促使人们自我反省,考察行为是否符合道德标准,提出“无人有意作恶”,认为错误源于无知,主张通过增长智慧和美德引导正确决策。 柏拉图在《理想国》中构建理想社会模型,探讨灵魂三部分关系,认为理性主导时个体才能做出正确选择,将知识与道德紧密相连。 虽然古希腊哲学家未直接讨论“自由意志”,但他们关于个体自主决策及对结果负责的思考,对后世关于自由意志和道德责任的讨论影响深远,亚里士多德强调人作为理性动物应依据内在理性及外在自然法则实现德性和善。 在 20 世纪 60 年代,马文·明斯基定义“Agent”为一个自主、独立运行的计算或认知实体,具备感知、决策和执行任务的能力,有自己的目标、行为和策略,能与其他 Agent 交互和协作,可视为智能系统中的功能模块,在不同层次执行不同功能,通过协作实现复杂智能行为。在其著作《心智社会》中,深入探讨了人类思维和人工智能的复杂关系。
2024-10-28
Agent是什么 AI agent是什么
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现,这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能,包括专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐了,往后,我们都将其称之为 AI Agent。 AI Agent 还包括下面几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 此外,还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Responser Agent、Daily Agent、Background Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2024-10-28
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具。我说的是如何写提示词,才能让deepseek通过Function Calling调用工具。
要在 Dify 的 agent 的 prompt 里让 DeepSeek 通过 Function Calling 调用工具,您可以参考以下内容: 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入:将工具信息及使用工具的提示词添加到系统提示中。INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,可动态调整。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传:利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 2. 当模型判断需要调用工具函数时,检测到返回的 json 里 function_call 字段不为空,则执行异步函数调用,采用回调方式获取函数返回结果。通过判断返回的 functionCall 的名称执行不同函数并返回结果。 3. 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放 sys prompt、memory、user query;Tools 里放能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆在 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型交互,没有 tool_calls 标记则循环结束。Multi Agents 是更换 system prompt 和 tools。
2024-10-24
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具
在 Dify 的 agent 的 prompt 中实现调用工具的方法如下: 1. 提示词注入阶段: INSTRUCTION 为注入到系统提示中的字符串,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应使用无关紧要的工具作为示例,避免 LLM 混淆。 tools_instructions 是将通用的工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。 REUTRN_FORMAT 定义了调用 API 的格式。 2. 工具结果回传阶段: 利用正则表达式抓取输出中的“tool”和“parameters”参数。 对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。 通过识别 LLM 返回的调用工具的字典,提取对应的值,传入相应的工具函数,将工具返回的结果以 observation 的角色返回给 LLM。对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 此外,当模型判断需要调用工具函数时,即检测到返回的 json 里面 function_call 字段不为空,则执行异步函数调用,可通过判断返回的 functionCall 的名称来执行不同的函数并返回结果。 在提升可控性方面,有以下建议: 1. 放弃 JSON mode,虽然模型能力提升能输出 JSON,但仍会出错,且不能保证 100%正确,而模型厂家对 Function Calling 有微调优化。 2. 降低 System prompt 依赖,化繁为简,能在 Tools 里写的东西尽量写在里面。 3. API Response 增强 Prompt,这一步的准确率很高,可增加给大模型的约束和提示。 4. 尽量让模型做选择,而不是填空,减少 token 输出,提高速度和准确率。 5. 利用 Tools 来做 Route,构建 Multi Agent,术业有专攻。
2024-10-24
如何设计一个多轮对话的AI命题Agent
设计一个多轮对话的 AI 命题 Agent 可以从以下几个方面考虑: 1. 自然语言交互: 多轮对话能力:LLM 应能理解自然语言并生成连贯且与上下文相关的回复,以帮助 Agent 进行有效交流。 生成能力:LLM 要展示卓越的自然语言生成能力,生成高质量文本。 意图理解:LLMs 能够理解人类意图,但需注意模糊指令可能带来挑战。 2. 知识: 语言知识:包括词法、句法、语义学和语用学,使 Agent 能理解句子和进行对话。 常识知识:如药和伞的用途等世界常识,帮助 Agent 做出正确决策。 专业领域知识:特定领域如编程、医学等知识,对解决领域内问题至关重要。但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 3. 记忆: 记忆机制:存储过去的观察、思考和行动,帮助 Agent 处理连续任务。 记忆提升策略:包括提高输入长度限制、记忆总结、用向量或数据结构压缩记忆。 记忆检索:Agent 检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 4. 推理和规划: 推理:基于证据和逻辑,对解决问题、决策至关重要。 规划:组织思维、设定目标和确定实现目标的步骤。 计划制定:分解任务、制定计划,包括一次性全面分解和自适应策略。 以国内版 Coze 为例,在实际操作中: 1. 对话引擎:目前国内版暂时只支持使用“云雀大模型”作为对话引擎,其携带上下文轮数默认为 3 轮,可修改区间是 0 到 30,具体轮数根据业务需求决定。 2. 为 Bot 添加技能: 在 Bot 编排页面的“技能”区域,为 Bot 配置所需的技能。 若不懂插件,可选择区域右上角的“优化”按钮,让 AI Bot 根据提示词自动选择插件。 也可自定义添加所需插件,点击插件区域的“+”号选择加入具体插件。 如 Bot 需要获取 AI 新闻,可添加新闻搜索接口。 3. 测试 Bot:在 Bot 编排页面的“预览与调试”区域,测试 Bot 是否按预期工作,可清除对话记录以开始新的测试,确保 Bot 能理解用户输入并给出正确回应。
2024-10-21
有为AI电商准备的Prompt或者Agent吗
以下是为您整理的关于 AI 电商的 Prompt 或 Agent 的相关信息: 在 Prompt 精选网站中新增了网站,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 在 toB 领域,智能客服产品通常借助 agent 来实现,接入企业的 QA 知识库,对用户的信息予以回应,并依据用户的回答下达诸如取消订单、催快递之类的 action 指令。 新增了《》,作者为了让更多人理解 Agents 的可能性,分享了十篇具有较高可读性的关于 AIAgents 论文。 在之前的讨论中提到,AI Agent 的“大脑模块”激活关键之一是 Prompt,但单纯通过 Prompt 构建大脑模块(Prompttuning)一般适合“无趣的灵魂”,拟人化不那么重的情况,而对于“有趣的灵魂”,最直接的解决方式是通过微调一个定向模型(Finetuning),一般创建方式是 Prompttuning + Finetuning 相结合。
2024-10-17
通过ai建立游戏npc
以下是关于通过 AI 建立游戏 NPC 的相关信息: Inworld AI 是一家专注于游戏和人工智能的初创公司,其开发的 Inworld 角色引擎可以将游戏的 NPC 进行 AI 化并集成到游戏中。该引擎超越了大语言模型,增加了可配置的安全性、知识、记忆、叙事控制、多模态等功能,能使 NPC 自我学习和适应,具有情绪智能。 Inworld 的角色引擎具有以下特点和功能: 1. 可以创建具有独特个性和上下文意识的角色,无缝集成到实时应用中,内置优化规模和性能的功能。 2. 让 AI 非玩家角色(NPC)通过模拟人类的全方位沟通方式(包括语言、手势、表情和动作)来表达个性。 3. 开发了 Character Brain(性格大脑)引擎,使 AI NPC 能够学习和适应,具有情绪智能的关系导航能力,具有记忆和回忆能力,并能够自主地发起目标,执行动作并遵循自己的动机。 4. 功能包括: 目标和行动:使用定义的触发器、意图识别和动机来触发角色对玩家行为的反应,并在游戏中驱动交互。 长期记忆:角色以类似人类的记忆功能操作,从闪存和长期记忆中检索信息,创建吸引玩家回归的引人入胜的体验。 个性:通过使用自然语言创建不同的个性,添加关于角色背景故事、动机和缺点的丰富细节,使角色生动起来。 情绪:Inworld 角色能够对与用户的互动表达情绪,情绪可以映射到动画、目标和触发器。 实时语音:使用内置的语音设置进行最小延迟,并配置角色的性别、年龄、音调和说话速度。或者,使用来自 Eleven Labs 的第三方服务创建自定义和克隆语音。 Inworld AI 的"Contextual Mesh"功能还提供了以下方式来定制 AI 非玩家角色(NPC)的行为和知识: 1. 可配置的安全性:可以配置 NPC 的对话方式,在诸如亵渎、暴力、成人话题、酒精、药物使用、政治和宗教等话题上有一定灵活性。 2. 知识:可以输入"个人知识"来控制他们的角色应该知道或不应该知道的信息,使用"共享知识"来定义多个角色拥有的知识,如共享的传说、世界背景等。 3. 玩家档案:收集关于玩家的信息,并允许 NPC 在形成互动时考虑到这些信息。 4. 关系:通过配置每个角色的关系流动性设置,让玩家有能力与 NPC 建立关系。 5. 第四堵墙:确保角色只从他们的世界中存在的知识中获取信息,创建更沉浸的故事讲述和游戏体验。 Inworld 可以与各种游戏引擎(如 Unity、Unreal Engine 等)和其他游戏开发工具无缝对接,使得开发者可以更容易地在他们的游戏中引入 AI NPC。Inworld AI 还可以帮助品牌能够创建交互性强的 AI 角色,无需编码。 此外,电子游戏与人工智能的结合有着广泛的可能,包括玩家建模、辅助设计、代码辅助和代码自动生成等等。其中与游戏直接相关的应用主要包括构建游戏中的智能体、构建玩游戏的智能体、程序化内容生成(Procedural Content Generation,PCG)。“构建游戏中的智能体”是指构建游戏的非玩家角色(Nonplayer character),也就是常说的 NPC,包括构建智能对象,创建其移动、寻路、攻击等行为,以及对话等交互行为。
2024-10-21
我是一个老师,相信AI时代人人都能成为学霸,我认为学霸具有三个心法和一个方法,方法一,建立学霸的信念系统(我行、我能、我可以),方法二,不要和别人比,方法三、主动积极的思考力。学霸的终极方法是自学。自学+AI无所不能。你觉得我怎么能帮助每一个学生成为学霸,有哪些步骤和要点?
在 AI 时代帮助每个学生成为学霸,以下是一些步骤和要点: 1. 培养获取知识的能力:教导学生掌握利用 AI 技术获取和处理信息的方法,提高获取知识的效率。 2. 促进知识内化:引导学生将获取的信息和知识有效内化,转化为智慧。例如,通过实践反思、交流讨论等方式,提升知识的转化速度和质量。 3. 建立信念系统:帮助学生树立“我行、我能、我可以”的信念,增强学习的自信心。 4. 培养独立思考:鼓励学生主动积极思考,不盲目与他人比较,专注自身的成长和进步。 5. 强调自学:引导学生重视自学,让他们明白自学结合 AI 能够带来强大的能力。 6. 培养创造能力: 鼓励学生勇于尝试新事物,将失败视为学习的一部分。 培养批判性思维,不盲目跟从权威。 引导学生从实践中反思,提炼洞见。 促进学生与不同背景的人交流,激发新的思路。 持续学习和不断创造是相辅相成的,通过积累知识和经验,并将其转化为实际价值,学生能够在 AI 时代更好地成长和发展。
2024-10-08
我想建立 ai 客服帮我解决一些专业化的客服问题
以下是关于建立 AI 客服的相关信息: 传统智能客服企业在 LLM 时代面临困境,如明星智能客服企业欠薪、部分企业解散团队或转向出海客服方向。这既有必然性也有偶然性,与智能客服行业的属性有关。 从产品角度看,智能客服分为智能部分和客服部分。智能部分基于 NLP 技术进行基于业务逻辑的 AI 对话管理,客服部分包括传统客服坐席、内部数据查询台等。 企业对客服效果非常看重,而做好客服服务需要企业产品的详细数据与用户数据,但智能客服企业在赋能时难以获取关键信息,很多采取本地部署,费力且难有积累。 您可以通过以下方式建立 AI 客服: 参考“DIN:全程白嫖拥有一个 AI 大模型的微信助手”,一个能解答任何问题的 AI 机器人,可接入微信或群聊,为用户提供自动答疑服务,还能投喂特定知识,成为客服、专业老师或知识备忘录,无需技术知识,小白也能轻松搭建,全程只需复制粘贴,可自定义知识库,满足不同需求,支持多场景应用,如客服、教育、个人知识管理等。 了解“零基础模板化搭建 AI 微信聊天机器人”,微信有多种功能,如个人微信/微信群、微信公众号、微信服务号、微信客服等,Coze AI 平台支持与微信公众号、服务号、客服的对接,最近 Coze 的国内版正式发布 API 接口功能,可对接个人微信甚至微信群。相关部署方法对国外版或国内版 Coze 均适用,但对接国外版需服务支持黑魔法。
2024-10-03
心理学的对话ai如何建立
建立心理学的对话 AI 可以从以下几个方面考虑: 1. 预期会有更多针对 AI 聊天机器人的专业甚至临床用例,例如 AI 驱动的心理治疗师、营养师、教练和导师,它们能为全球数百万消费者提供更经济便捷的个人和职业发展支持。用户只需打开应用程序即可提问或开始对话。 2. 法学硕士越来越多地被用作对话式人工智能或聊天机器人的核心。与当前的对话技术相比,它们可能提供更高水平的对话理解和上下文感知。例如,Facebook 的 BlenderBot 专为对话而设计,可以与人类进行长时间对话,同时保持上下文。谷歌的 BERT 用于理解搜索查询,也是该公司 DialogFlow 聊天机器人引擎的组件。谷歌的 LaMBA 也是为对话而设计的。 3. 但需要注意的是,这些法学硕士并不完美。它们接受过有关过去人类内容的训练,并且倾向于复制训练中接触到的任何种族主义、性别歧视或偏见语言。尽管创建这些系统的公司正在努力过滤仇恨言论,但尚未完全成功。 此外,一些最新的相关动态包括:微软和 OpenAI 计划建造“星际之门”AI 超级计算机,预计成本 1000 亿美元,旨在提供强大 AI 计算能力;OpenAI 发布语音生成模型 Voice Engine,可根据文本和 15 秒音频样本生成自然语音,支持情感丰富的声音生成、多语种和保留口音;Hume AI 发布情感感知语音 AI EVI,结合语言模型和表情测量技术,实现情绪感知对话,可感知细微情绪并作出响应,提升对话自然度。
2024-09-29
如何建立一个个人助手并随时吸收新知识
目前知识库中没有关于如何建立一个个人助手并随时吸收新知识的相关内容。但一般来说,要建立这样一个个人助手,您可以考虑以下步骤: 1. 确定个人助手的功能和应用场景,明确其要解决的问题和提供的服务。 2. 选择适合的技术框架和工具,例如自然语言处理库、机器学习框架等。 3. 收集和整理大量的数据用于训练,以提高助手的理解和回答能力。 4. 设计有效的学习机制,使其能够不断从新的数据和用户交互中吸收新知识。这可能涉及到在线学习、增量学习等技术。 5. 不断优化和改进个人助手的性能,通过测试和用户反馈来调整和完善。 需要注意的是,这是一个较为复杂的过程,需要具备一定的技术知识和经验。
2024-09-24
如何建立自己的BOT
建立自己的 Bot 可以参考以下步骤: 1. 通过系统默认创建个人团队(Personal),但该团队内创建的资源无法分享给其他团队成员。您也可以创建团队或加入其他团队,更多信息请参考。进入团队空间后,默认打开 Bots 页面。 在 Bots 页面,单击创建 Bot。 输入 Bot 名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像,最后单击确认。 Bot 创建后,会直接进入 Bot 编排页面。您可以在左侧人设与回复逻辑面板中描述 Bot 的身份和任务,单击复制可使用模板格式添加描述。 在中间技能面板为 Bot 配置各种扩展能力。 在右侧预览与调试面板中,实时调试 Bot。 2. 参考 Aria 清的经验: 登录并注册 https://www.coze.cn/ 。 点击【创建 Bot】。 选择【工作空间】。 起一个【Bot 名称】。 输入【Bot 功能介绍】。 上传符合 Bot 的【图标】。 【点击确认】。 选择【大模型】(例如豆包角色扮演模型)。 制定【人设与回复逻辑】,可点击 https://www.coze.cn/s/i6J6ffEd/,查看 prompt 。 输入【开场白】(选择其他大模型,就可以配合各种插件、知识库等)。 在【预览与调试】中测一下自己的 Bot 。 点击【发布】。 3. 复制一个预置的 Bot 并在此基础上进行修改来创建: 访问,单击目标 Bot。 在 Bot 的编排页面右上角,单击创建副本。 在弹出的对话框中,设置 Bot 名称、选择 Bot 的所属团队,然后单击确定。 在新打开的配置页面修改复制的 Bot 配置,点击 Bot 名称旁边的编辑图标来更改 Bot 名称。 在人设与回复逻辑区域,调整 Bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 Bot 的提示词,以便大模型更好的理解。 在技能区域,为 Bot 配置插件、工作流、知识库等信息。 在预览与调试区域,给 Bot 发送消息,测试 Bot 效果。 当完成调试后,可单击发布将 Bot 发布到社交应用中,在应用中使用 Bot。
2024-09-21