Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果我要学习使用AI,怎么开始呢

Answer

以下是新手学习 AI 的建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
  6. 对于中学生学习 AI 的建议:
    • 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。
    • 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
    • 学习 AI 基础知识,包括基本概念、发展历程、主要技术如机器学习、深度学习等,以及在教育、医疗、金融等领域的应用案例。
    • 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。
    • 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

[title]问:新手如何学习AI?了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

[title]问:中学生如何开始学习AI,有哪些好用的工具或者平台?我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

[title]问:新手如何学习AI?记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

Others are asking
学习ai的路径
以下是新手学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-15
适合电商美工制作详情页的ai
以下是一些适合电商美工制作详情页的 AI 工具和方法: Stable Diffusion: 如果您是运营网店的女装店主且资金有限,可以使用 Stable Diffusion 来初步制作商品展示图。具体步骤如下: 1. 真人穿衣服拍照,获取真实质感的照片。如果身材方面有问题,可借助美图秀秀或 PS 处理。 2. 选好底模,一定要是 realistic 的真人照片风格底模,如 majicmixRealistic_v7。 3. 根据不同平台需求换头,如面向海外市场换白女头,面向中老妇女换妈妈头。 4. 在图生图下的局部重绘选项卡下涂抹自己替换的部分,并设置合适的 prompts 和 parameters,如“breathtaking cinematic photo,masterpiece,best quality,,blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands”。 Midjourney: 1. 主体物指令:确定产品类型后,可加入主体描述加强图片生成效果。如电商类产品加上“模特实拍、商品列表、尺寸”等描述,能得到常见的商品详情页设计图。 2. 配色指令:确定 APP 类型和主体描述后,可定制主题色。例如餐饮类输入“beach style color”能生成沙滩风饮料订购页面;快递类输入“Forest”指令能生成亲近自然感觉的图片;生活服务类输入“glacier color scheme”能得到有氛围感的订房界面。 3. 风格指令:如果配色指令无法满足要求,还可指定艺术风格、艺术家、设计师、插画家的名字。如天气类输入“Pop art”能生成色彩鲜艳的波普艺术风格天气 APP;社交类输入“Kpop fashion”能生成时尚流行的页面效果,输入“by Van Gogh”能得到带有梵高作品的 UI 页面。
2025-02-15
适合电商美工学习的ai
对于电商美工学习的 AI 相关内容,以下为您提供: 利用 Stable Diffusion 制作电商商品展示图:如果您是运营网店的女装店主且资金有限,可通过真人穿着商品拍照,借助美图秀秀或 PS 处理身材方面的问题,选好真人照片风格的底模(如 majicmixRealistic_v7),根据不同平台换头(如面向海外市场换白女头),使用图生图下的局部重绘选项卡涂抹替换部分,并设置合适的 prompts 和 parameters(如 breathtaking cinematic photo, masterpiece, best quality, , blonde hair, silver necklace, carrying a white bag, standing, full body, detailed face, big eyes, detailed hands)来初步制作展示商品。 电商相关的 AI 工具: Krea AI 可在几秒内将真实产品添加到任何图像中,效果出色。 Google 发布的推理模型 Gemini 2.0 Flash Experimental 适用于多模态理解、推理、编码,可在 AI Studio 免费体验,其低版本已超越 OpenAI 的 o1 模型,Pro 版本尚未发布。
2025-02-15
AI发展的方式除了大模型,还有什么
AI 的发展方式除了大模型,还包括以下方面: 1. 算法:算法的不断优化和创新推动着人工智能的发展。 2. 算力:强大的算力支持是实现复杂人工智能任务的基础。 3. 数据:优质的数据集对于人工智能学习算法的发展至关重要,被称为“AI 时代的石油”。 4. 深度神经网络:通过简单细胞检测特征、复杂细胞汇总信息产生结果等方式实现识别、判断和行动等功能。 5. 端侧模型:端侧模型并非越小越好,而是要够用、好用,设备算力决定最优模型规模,多模态能力是突破通用计算的关键。 6. 端侧 Agents:在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力,是连接模型与应用的关键。 7. 预训练:包括对编程语言、维基百科、新闻常识、网络社区、各类书籍等内容的预训练,但由于版权和费用问题,不包括期刊论文数据库。 8. 开源生态:促进了 AI 技术的交流和发展。
2025-02-15
现在AI发展的主要方向现状说明
目前 AI 的发展主要呈现以下几个方向和现状: 1. 技术范式的革新:传统的 Scaling Law 遭遇瓶颈,OpenAI 的 o 系列模型开创了从“快思考”到“慢思考”训推双管齐下的新道路。 2. 多模态能力的跃迁:从 Sora 的视频生成到原生多模态的崛起,再到世界模型的尝试,AI 开始真正理解和模拟立体世界。例如,除传统的文生视频、图生视频能力迭代外,当前的主要技术发展还围绕着通过转绘改变画风、视频内人物识别和替换方向。 在服务头部创作者方面,未来会逐渐转向编辑器能力增强,强化视频细节可控性,并逐渐将剪辑、音效生成匹配等后期制作任务智能化。 影视后期方向,未来可以将动捕演员的表演直接转化为虚拟角色,提高特效制作效率。 专业领域,创作者未来可以快速通过草图分镜验证效果。 随着实时生成能力的进一步提升,生成成本的下降,AI 实验性艺术在博物馆、展览等互动应用将会增多。 在 C 端大众消费侧,看好 AI 视频在小说、网文阅读、短情景剧等内容消费方向发挥潜力;人物识别和替换也可以衍生电商平台虚拟试衣间能力。 Viggle、DomoAI 的产品中的模板套用能力若以更低成本开放在短视频产品中,可能会带来短视频平台效果模板新的爆发周期。 3. 从“训练时代”向“推理时代”的转变:市场的关注焦点从去年基础模型能力的提升,到今年模型的落地应用和场景化。AI 的能力需要转化为实际的产品和服务,满足用户需求才是核心。 4. 前沿技术点: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-15
ai接入微信、钉钉聊天的软件
以下是关于将 AI 接入微信、钉钉聊天的相关信息: 基于 COW 框架的 ChatBot 实现步骤: 作者为熊猫大侠,COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 张梦飞同学写了更适合小白的使用教程: 。 可实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)和常用开源插件的安装应用。 正式开始前需知:ChatBot 相较于在各大模型网页端使用区别在于需要接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 零基础模板化搭建 AI 微信聊天机器人: COW 全称 Chatgptonwechat,可在微信、飞书、钉钉等主流社交平台上实现对接各种大模型的功能。 在刚买的腾讯云服务器上通过 Docker 运行 COW,并将之前在极简未来平台创建的 API 信息填入其中。 使用 Docker 服务部署 COW 组件,宝塔面板可让技术小白以图形交互方式运维服务器,手动配置部署容器编排模板。
2025-02-15
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
我要查找医学论文文献,用哪种AI最合适?
如果您要查找医学论文文献,以下几种 AI 工具可能较为合适: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,能增强对科学文献的洞察,提供引用声明搜索、自定义仪表板和参考检查等工具,简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 此外,在论文写作领域,还有以下常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可帮助精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-11
我要文生图
以下是文生图的相关教程: Tusiart 简易上手教程 1. 定主题:明确要生成的图片的主题、风格和表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:可控制图片中特定的图像,如人物姿态、生成特定文字等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:选择 840000 即可。 7. Prompt 提示词:用英文写想要生成的内容,使用单词和短语组合,用英文半角逗号隔开。 8. 负向提示词 Negative Prompt:用英文写想要避免产生的内容,单词和短语组合,用英文半角逗号隔开。 9. 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 11. 尺寸:根据个人喜好和需求选择。 Liblibai 简易上手教程 1. 定主题:明确要生成的图片的主题、风格和表达的信息。 2. 选择 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 即可。 5. CLIP 跳过层:设成 2 。 6. Prompt 提示词:用英文写想要生成的内容,使用单词和短语组合,用英文半角逗号隔开。 7. 负向提示词 Negative Prompt:用英文写想要避免产生的内容,单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 10. 尺寸:根据个人喜好和需求选择。 11. 生成批次:默认 1 批。 第二十四期 FLUX 之 PULID 换脸 如果无法科学上网,可通过以下方式: 1. 注册 bizyair(https://cloud.siliconflow.cn/i/juDv09Wj),拿到 key。 2. 在 comfyui 中安装 bizyair 最新的节点,直接支持 pulid,无需安装各种模型。节点也可在网盘获取。 3. 没有独立显卡的笔记本也可体验,下载相关包(链接:https://pan.baidu.com/s/1iUF1JXidizkHh0kKthcQ7g?pwd=w36m 提取码:w36m 解压即用,前提是拿到 key。 目前 fluxpulid 只有文生图,关于图生图的做法:准备两张图,一张是参考图,一张是要换脸的图,然后用 joy 反推,把文字再贴到 pulid 工作流里,也可直接合在一个工作流里。并附上相关工作流(链接:https://pan.baidu.com/s/1NTMiaQdgu5y9iK_9v0jhTQ?pwd=rkqr 提取码:rkqr )。
2025-02-10
我要做短剧推广,应该用哪个ai
如果您要做短剧推广,可以考虑以下 AI 工具和方法: 1. 视频工具:Pika、Pixverse、Runway、SVD 等。 2. 故事来源: 原创(直接经验):您或您周围人的经历、您做过的梦、您想象的故事等。 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 3. 剧本写作: 编剧是有一定门槛的手艺,不能单纯套剧作理论和模版,要多写多实践,再结合看书总结经验,循环往复。 短片创作篇幅较小,情节和角色相对简单,可从自己或朋友的经历改编入手,或者对触动您的短篇故事进行改编。 多跟别人讨论您的故事,有助于修改和进步。 4. 商业化方面: AI 降低了影视制作门槛,非专业人员也能做出优秀作品。 AI 短剧是介于个性化创作与艺术创作之间的良好折中点,门槛较低,创作者易接触。 在上影的全球 AI 电影马拉松大赛中一人拿两个奖,非技术专业出身也能分享前沿技术及创作思路。 创作不能一直为爱发电,商业目的分直接和间接两种,间接如参加比赛获得曝光度从而产生商业行为,直接如接受付费创作。 商业短剧是创作商品,要为用户提供情绪价值,让用户有获得感,否则难以让用户消费。 AIGC 短剧面向 ToC 人群,全民可参与,制作门槛低,创作者偏自我性,收益地板不稳定、天花板高,两级分化严重。 AIGC 广告宣传片面向 ToB,个人难接大单,多为固定渠道供应,制作具有甲方性,地板稳定、天花板有限,可能面临价格恶性竞争。
2025-02-10
我是一个新手,我要学习Ai的使用入门,我不是要用去做Ai的,我应该从哪里开始入门?
对于新手学习 AI 的入门,您可以按照以下步骤进行: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-09
如果我要整理多年收藏的网页变成不同科目的知识库,哪些AI工具最适合?
以下是一些适合将多年收藏的网页整理成不同科目的知识库的 AI 工具: 1. 工具入门篇(Prompt):现成好用的 Prompt。适用人群为完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白。文章链接:。简要说明:想直接拿好用的提示词拿来用用的小伙伴,可以从这里开始,有很多可以直接复制、粘贴的优秀 prompt 案例,它们都有完整的结构。 2. 工具入门篇(AI Agent):Agent 工具 小白的 Coze 之旅。适用人群为完全没有编程基础,但对 AI 已有一点概念的小白。文章链接:。简要说明:为纯粹小白补的分享 AI AGENT 搭建平台,为什么是它、怎么 30 分钟就能开始用它。 3. 工具入门篇(AI Pic):现在主流的 AI 绘图工具网站。适用人群为完全没接触过 AI 出图、只是听说过的小伙伴。文章链接:。简要说明:为纯粹的小白提供一个工具列表和扫盲。 4. 工具入门篇(AI Tools):数据工具 多维表格小白之旅。适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者。文章链接:。简要说明:用表格 + AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 5. 工具入门篇(AI Code):编程工具 Cursor 的小白试用反馈。适用人群为 0 编程经验、觉得编程离我们很遥远的小白。文章链接:。简要说明:通过 AI 工具对编程祛魅,降低技术壁垒。 6. 工具入门篇(AI Music):音乐工具 Suno 的小白探索笔记。适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。文章链接:。简要说明:AI 赋能音乐创作,无需乐理知识即可参与音乐制作。
2025-01-27
普通人学习ai生图方式
以下是为普通人提供的学习 AI 生图的相关内容: 如何判断一张图片是否 AI 生成: 当我们接触的 AI 制品增多,可通过“整体看光影,细节看结构”的技术要点来找出画面 bug。通过大量分析 AIGC 画作,人们会在脑中形成“判断模型”,但起初可能“知其然,不知其所以然”。从本质上看,人类绘画创作是线性发展,而 AI 是以积累数据、扩散噪声、再降噪收束的路径生图,会导致同一张图呈现不同绘画级别的细节。 Liblibai 简易上手教程: 1. 首页模型广场:展示其他用户的模型,可查看详情、收藏并用于生图。 2. Checkpoint:生图必需的基础模型,必选。 3. Lora:低阶自适应模型,类似 Checkpoint 的小插件,可有可无,用于控制细节。 4. VAE:编码器,类似滤镜,调整生图饱和度,可无脑选 840000。 5. CLIP 跳过层:用于生成图片后控制、调整构图变化,一般设为 2。 6. Prompt 提示词:想要 AI 生成的内容。 7. 负向提示词 Negative Prompt:想要 AI 避免产生的内容。 8. 采样方法:选择让 AI 生图的算法。 AI 线上绘画教程: 如果需要大量商用且具艺术美感的图片,AI 生图是高效办法。主流工具如 midjourney 付费成本高,stable diffusion 硬件门槛不低,可选择免费在线 SD 工具网站如。本教程适用于入门玩家,旨在让读者半小时内自由上手创作绘图。
2025-02-14
什么是深度学习
深度学习是源于新的方法和策略,旨在通过克服梯度消失问题来生成深层的非线性特征层次,以训练具有数十层非线性层次特征的体系结构。2010 年早期的研究表明,结合 GPUs 和激活函数能提供更好的梯度流,便于训练深层结构。深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。例如,长短时记忆循环神经网络允许网络收集过去几百个时间步的活动,从而做出准确的预测。自 2013 年以来,其使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。 深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。其突破性研究成果包括反向传播、更好的初始化网络参数等。 在相关技术名词中,深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可用于监督学习、无监督学习、强化学习。
2025-02-14
学习大模型从哪里开始
学习大模型可以从以下几个方面入手: 1. 理解大模型的概念:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用上学参加工作来类比大模型的训练和使用过程。 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。Token 被视为模型处理和生成的文本单位,是原始文本数据与大模型可以使用的数字表示之间的桥梁。 2. 了解大模型的整体架构: 基础层:为大模型提供硬件支撑、数据支持,例如 A100、数据服务器等。 数据层:分为静态的知识库和动态的三方数据集。 模型层:包括 LLm(如 GPT,一般使用 transformer 算法)或多模态模型(如文生图、图生图等)。 平台层:如大模型的评测体系、langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 3. 熟悉大模型的发展历程:起源于 2017 年发布的 Attention Is All You Need 论文,之后有众多基于大量语料的预训练模型,如 2018 年 Google 提出的 BERT,开创了双向预训练并行获取上下文语义信息和掩码语言建模(MLM);2018 年 OpenAI 提出的 GPT,开创了仅使用自回归语言建模作为预训练目标;2021 年 Meta 提出的首个开源模型 LLAMA,为构建更大规模、更通用的语言模型提供了方法与工具。
2025-02-14
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 可在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 如果您的学习路径偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习路径偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-14
如何高效使用chatgpt
以下是关于高效使用 ChatGPT 的一些方法和建议: 1. 对于产品经理: 步骤 1:进行原 SQL 输入,让 ChatGPT 对需求有初步理解。 步骤 2:将真实的业务需求场景及现存问题输入给 ChatGPT,通过多轮输入输出的讨论,强化其对真实需求的认知,以获取针对性的优化建议,并输出更符合需求的代码。 步骤 3:根据 ChatGPT 给出的结果不断调试和优化,直至生成满足需求的新代码。例如,按照原 SQL 思路更新数据时存在耗时长、资源浪费严重的问题,可参考 ChatGPT 提出的优化建议,如每次更新 1 天而非 30 天的数据、创建中间结果表存储非二次计算的数据等。 2. 对于开发人员: 痛点:在 IDE 和 ChatGPT 两个软件中不断切换、拷贝代码较为麻烦。 解决方案:将 ChatGPT 装进 WebStorm 中,通过右键选中代码,让 ChatGPT 进行优化、找 BUG 等操作,并可在窗口中随时提问。具体操作如下: 第一步:获取 API Keys,可参考文章 第二步:在 WebStorm 中下载 ChatGPT 插件,并将从 OpenAI 开发平台获取到的 API keys 设置进插件的配置中。安装后可实现选中代码找 bug、优化代码、自定义指令等功能,插件底部还有对话框可实时提问,让其解释、重新生成代码等。 此外,ChatGPT 的诞生经历了一系列的研究和改进。OpenAI 团队曾侧重浏览功能,但后来减少了这方面的侧重,将指令型数据和聊天数据混合,创造出既可以处理具体任务又能流畅聊天的模型。GPT4 完成训练后,特别强调指令遵循能力,但仍存在可靠性问题。指令型模型中的某些任务描述不够清晰,增加了模型执行和数据标注的难度,而 ChatGPT 这类聊天模型则更加直观,能更好地理解和处理潜在局限性,展现出更连贯的特征和更稳定的行为。
2025-02-14
如何在coze已经建好的智能体上搭建一个用户登陆的模块,让用户在使用前输入姓名,序号
要在已建好的 Coze 智能体上搭建用户登陆模块,让用户在使用前输入姓名和序号,您可以参考以下步骤: 1. 服务器设置: 购买云服务器,推荐使用腾讯云服务器。新用户专享 28 元/年一台云服务器,若售罄可购买 82 元/年的,并选择宝塔 Linux 面板 8.1.0 腾讯云专享。 云服务器设置密码,选择暂不需要教学场景,通过远程登录的密码/密钥登录的重置密码来初始化密码,并妥善保存。 获取宝塔 Linux 地址,点击控制面板中的应用信息的管理应用,有两种获取方法。 设置宝塔的密码,登录宝塔 Linux 面板,输入相关操作并保存用户名和密码。 2. 变现模板配置: 超级管理员和普通用户的定义:超级管理员拥有管理整个系统的最高权限,普通用户没有项目配置权限和进入管理后台页的权限。 成为超级管理员:点击【成为超级管理员】按钮,进入用户注册登录页面,完成注册后获得超级管理员账户。 选择智能体配置模式,包括 Zion 默认智能体模式和您的 Coze 智能体模式。 3. API 接入微信群 Bot: 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 在“Docker”中的“项目模板”中添加,将编译好的内容复制进来,创建容器并确定。 查看运行服务,扫码接入微信,手动刷新日志,若看到 WeChat login success 则接入成功。
2025-02-14
大模型如何使用应用系统数据
大模型使用应用系统数据可以通过检索增强生成(Retrieval Augmented Generation,RAG)技术来实现。 RAG 是一种结合检索和生成的技术,能够让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程为:首先,当用户给出输入,如问题或话题,RAG 会从数据源(如网页、文档或数据库记录)中检索出相关的文本片段,这些片段称为上下文。然后,RAG 将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望的输出,如答案或摘要。最后,RAG 从大模型的输出中提取或格式化所需信息返回给用户。 从大模型的整体架构来看,其分为以下几层: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:包括静态的知识库和动态的三方数据集。这里的数据层指的是企业根据自身特性维护的垂域数据。 3. 模型层:包含 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等模型,训练所用数据为图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,是模型与应用之间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2025-02-14
ai魔术橡皮擦在线使用
以下是关于 AI 魔术橡皮擦的相关信息: Magic Brush 按键功能详解: 1. 笔刷:不同的笔刷区分不同区域和运动轨迹,目前支持 6 种不同的笔刷,通过颜色区分。每种笔刷必须要绘制相应的运动轨迹才可生效,即每个颜色必须要有“1 个笔刷覆盖的区域+1 个运动轨迹”才可生效。 2. 调节笔刷大小。 3. 擦除选定区域。 4. 自动识别:上传图片后,PixVerse 会自动识别图中元素(例如天空、树、人、狗、猫等)。当勾选相应元素,例如天空,PixVerse 会帮您自动对该元素添加运动区域。如果列表中没有出现某些画面中的元素,则说明该元素未能被自动识别,请手动通过笔刷选择该区域。 5. 返回上一步/下一步,重置操作。 6. 删除运动轨迹:单击鼠标左键。 FAQ: 1. Magic Brush 只支持 PC 端,如果是在手机或者 iPad 登录,请换成电脑。 2. 浏览器广告拦截插件会导致笔刷失效,请检查自己的浏览器并关闭插件。 3. 如问题仍未解决,请联系:support@pixverse.ai 另外,Canva 也推出了 Magic Eraser 相关的 AI 功能,包括 Magic Design、Draw your Ideas、Translate Designs、Magic Eraser and Magic Edit、Beat Sync、Magic Presentations、More Magic Write、We’ve evolved Text to Image、Animations、Brand Hub 等。
2025-02-14
如何使用deepseek
使用 DeepSeek 的步骤如下: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 DeepSeek。 3. 认真阅读开场白之后,正式开始对话。 DeepSeek 的设计思路包括: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定)。 关于 DeepSeek 的相关活动和分享: 1. 2025 年 2 月 6 日的分享中提到了关于 DP 模型的使用,包括其功能、优势、问题、审核方法、使用建议、使用场景和案例展示等。 2. 2 月 23 日的 AI 切磋大会是 DeepSeek 专场,包括深度聚焦、实战导向、全网联动等亮点,活动流程包括签到、全国联动、全国联动使用方法分享、分城市各自案例分享和自由探讨等环节。
2025-02-14
ai为何使用GPU而不是CPU
AI 使用 GPU 而不是 CPU 主要有以下原因: 1. 强大的计算能力:GPU 在并行处理大量数据方面具有显著优势。例如,同年《Largescale Deep Unsupervised Learning using Graphics Processors》这篇论文指出,利用 GPU 比 CPU 快 70 倍,能将数周的工作压缩到几天甚至一天完成。 2. 适应深度学习需求:大型神经网络、输入的多个变量以及有效的反向传播 GPU 实现等方面,GPU 表现出色。如 MNIST 数据库能达到令人惊叹的 0.35%错误率。 3. 处理图形相关运算:GPU 原本就是为处理图像和图形相关运算工作而设计,其采用的核心技术如硬件 T&L 等,适合 AI 中的图形处理任务。 4. 分担 CPU 工作:GPU 的诞生源自对 CPU 的减负,使显卡减少对 CPU 的依赖,并进行部分原本 CPU 的工作。 5. 算力优势:算力可以直接转化为 GPU,一张显卡中的 GPU 是计算能力的关键。 6. 适应 AI 模型需求:当今所有 AI 模型都在使用大量专用芯片的 GPU 卡上运行。例如 NVIDIA A100 GPU 有 512 个“张量核心”,能大幅提高计算效率。但实际应用中,也存在一些限制,如数据传输、内存容量和优化方法等问题。
2025-02-14