直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

个人使用可以通过对话微调的大模型

回答

大模型是指输入大量语料,使计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程:

  1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。
  2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。
  3. 找老师:用合适的算法让大模型更好理解 Token 之间的关系。
  4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 搬砖:完成就业指导后,进行如翻译、问答等工作,在大模型里称为推导(infer)。

在 LLM 中,Token 被视为模型处理和生成的文本单位,能代表单个字符、单词、子单词等,具体取决于分词方法。将输入分词时会数字化形成词汇表。

个人动手实验方面:

  • macOS 系统可采用 GGML 量化后的模型。有名的项目如 ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ ,首先编译,利用 Metal 的 GPU 用相应命令编译,然后去下载模型,还提供了 WebUI,启动 server 后默认监听 8080 端口,打开浏览器可对话。
  • Whisper 与 llama 类似,用 make 命令编译,去指定地址下载量化好的模型,转换音频,目前只接受 wav 格式,可用 ffmpeg 转化。

张梦飞的教程《用聊天记录克隆自己的 AI 分身》全程本地操作,目标是把微信聊天记录导出,用其微调模型,最终接入微信替你回复消息。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

大模型入门指南

[title]大模型入门指南[heading1]什么是大模型通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID|<br>|-|-|<br>|The|345|<br>|cat|1256|<br>|sat|1726|<br>|…|…|

大模型入门指南

由于笔者实用的macOS系统,因此采用GGML量化后的模型,官方开源出来的模型大都以Python为主,效率可想而知,因此笔者一般会采用社区内的其他实现,比较有名的项目有:ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++([7])ggerganov/whisper.cpp:Port of OpenAI's Whisper model in C/C++([8])[heading2]LLama[content]首先是编译,为了利用Metal的GPU,可以用如下命令编译:之后需要去Llama-2-7B-Chat-GGML([9])中下载模型,3G到7G不等,读者可以按需尝试即可。得到输出此外,llama.cpp还提供了WebUI供用户使用,首先启动server:它默认监听8080端口,打开浏览器就可以对话了[heading2]Whisper[content]和llama类似,采用make命令编译,之后去ggerganov/whisper.cpp([10])下载量化好的模型,然后转换音频即可,目前只接受wav格式,可以用ffmpeg转化输出的srt文件如下所示:|Size|Parameters|English-only model|Multilingual model|Required VRAM|Relative speed|<br>|-|-|-|-|-|-|<br>|tiny|39 M|tiny.en|tiny|~1 GB|~32x|<br>|base|74 M|base.en|base|~1 GB|~16x|<br>|small|244 M|small.en|small|~2 GB|~6x|<br>|medium|769 M|medium.en|medium|~5 GB|~2x|<br>|large|1550 M|N/A|large|~10 GB|1x|一般来说,英文的音频small模型就有够了,但是如果是中文,最好用最大的模型。

张梦飞:用聊天记录把自己克隆成AI,分分钟化身为1V100的“时间管理大师” -- LLamaFactory部署与微调大模型应用教程

[title]张梦飞:用聊天记录把自己克隆成AI,分分钟化身为1V100的“时间管理大师” -- LLamaFactory部署与微调大模型应用教程作者:张梦飞原文链接,大家多多关注https://mp.weixin.qq.com/s/B8FUmjSdr-wAjIApa9aNVA大家好,我是梦飞。好久不见,一个月前发布的视频号,今天终于能够填坑了!这次带来的教程是:《用聊天记录克隆自己的AI分身》在我多次尝试(其实是多个平台账号欠费之后),终究是放弃了让大家云端使用。学习和使用成本太高,本篇教程依然全程本地操作,无需调用云端资源。让大家既能体验大模型训练和调用,又可以无负担的使用自己微调后的大模型!本篇教程的目标是,把自己微信中的聊天记录导出,用自己的聊天记录去微调一个模型,最终将这个微调后的模型接入微信中,替你回复消息。

其他人在问
我想了解一下关于模型微调的知识
以下是关于模型微调的知识: 介绍:微调可让您从 API 提供的模型中获得更多收益,比如比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已在大量文本上预训练,微调通过训练更多示例改进小样本学习,让您在大量任务中取得更好结果。对模型微调后,无需在提示中提供示例,可节省成本并降低延迟。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型。 哪些模型可以微调:微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。还可以继续微调微调模型以添加其他数据,无需从头开始。 微调的概念和意义:在人工智能领域,通常根据应用领域将大模型分为通用大模型和领域特定模型。通用大模型如 GPT4.0、GPT3.5 等具有广泛的自然语言理解能力,但在特定领域表现可能不理想。对大模型针对特定领域进行的训练过程称为微调,通过在特定领域数据上训练,优化所有层参数,提高在该领域的专业性。微调可节省成本、加快模型部署和应用速度。 相关应用开发:除了调用 ChatGPT 之外,还需学会模型微调、设计 Prompt、优化用户交互的解决方案等。在开发中,程序读取结构化数据,如 JSON 格式。通过稳定的提示词设计及一些模型参数(如温度 Temperature 等)来让 ChatGPT 保持稳定输出。
2024-11-12
如何做大模型的云端部署与微调
做大模型的云端部署与微调,主要包括以下步骤: 1. 选择合适的部署方式: 本地环境部署。 云计算平台部署。 分布式部署。 模型压缩和量化。 公共云服务商部署。需根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源: 确保有足够的训练数据覆盖目标应用场景。 准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础: 可以使用开源的预训练模型如 BERT、GPT 等。 也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练: 根据具体应用场景对预训练模型进行微调训练。 优化模型结构和训练过程以提高性能。 5. 部署和调试模型: 将训练好的模型部署到生产环境。 对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护: 大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 例如,对于 SDXL 的大模型,本地部署时要注意模型分为 base+refiner 以及配套的 VAE 模型,需将其放入对应文件夹,并在秋叶启动器中将 webUI 的版本升级到 1.5 以上。而对于 Llama3 的部署和微调,实操分两部分,包括本地部署并通过 webdemo 对话,以及使用特定数据集进行微调,具体流程为购买服务器、安装代码环境、下载通用模型和数据集、挑选微调框架、编写微调程序和验证结果。 总的来说,部署和微调大模型需要综合考虑多方面因素,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-10-26
使用主模型及微调模型进行图像生成的过程是什么?
使用主模型及微调模型进行图像生成的过程通常包括以下步骤: 1. 对于像 Video LDM 这样的模型,首先训练一个 LDM(隐扩散模型)图像生成器。 2. 以 OpenAI 的文本到图像模型为例,在大量由图像和描述图像的文本组成的数据集上进行训练。训练时,先将字符串用分词器分解为离散的 token,通过最大化似然函数构建文本语言模型,然后对图像进行调整将其转换为描述生成器。 3. 为改进在图像生成数据集上的描述效果,对描述生成器进行微调。例如,OpenAI 构建小规模描述数据集来描述图像主对象,诱导模型偏向于描述主对象,此为“短合成描述”;或者创建更长、更丰富的文本数据集来描述图像内容。 4. 对于视频生成,如 Video LDM 向解码器添加额外的时间层,并使用用 3D 卷积构建的逐块时间判别器在视频数据上进行微调,同时编码器保持不变,以实现时间上一致的重建。类似于 Video LDM,Stable Video Diffusion(SVD)也是基于 LDM,在每一个空间卷积和注意力层之后插入时间层,并在整个模型层面上执行微调。 5. 在视频生成的微调过程中,长度为 T 的输入序列会被解释成用于基础图像模型的一批图像,然后再调整为用于时间层的视频格式。其中有 skip 连接通过学习到的融合参数导向时间层输出和空间输出的组合。在实践中,实现的时间混合层有时间注意力和基于 3D 卷积的残差模块等。但 LDM 的预训练自动编码器存在只能看见图像、永远看不见视频的问题,直接用于生成视频会产生闪动伪影和时间一致性差的情况,所以需要进行上述微调操作。
2024-10-19
推荐一下国内可以通过对话微调的预训练模型
以下是为您推荐的国内可以通过对话微调的预训练模型相关信息: 为优化 Llama2 的中文能力,可使用以下数据: 网络数据:互联网上公开的网络数据,包括百科、书籍、博客、新闻、公告、小说等高质量长文本数据。 :中文 Wikipedia 的数据。 :中文悟道开源的 200G 数据。 :Clue 开放的中文预训练数据,经过清洗后的高质量中文长文本数据。 竞赛数据集:近年来中文自然语言处理多任务竞赛数据集,约 150 个。 :MNBVC 中清洗出来的部分数据集。 社区提供预训练版本 Atom7B 和基于 Atom7B 进行对话微调的模型参数供开放下载,关于模型的进展详见社区官网 https://llama.family。 另外,关于会话补全(Chat completions): gpt3.5turbo 和 textdavinci003 两个模型能力相似,但前者价格只是后者的十分之一,在大部分情况下更推荐使用 gpt3.5turbo。 gpt3.5turbo 模型不支持微调。从 2023 年 3 月 1 日起,只能对基于 GPT3.5 的模型进行微调。有关如何使用微调模型的更多细节,请参阅微调指南。 从 2023 年 3 月 1 日起,OpenAI 会将您通过 API 发送的数据保留 30 天但不会使用这些数据来提升模型。 关于安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent(国内版): 目前国内版暂时只支持使用“云雀大模型”作为对话引擎,其携带上下文轮数默认为 3 轮,可修改区间是 0 到 30,具体轮数可根据业务需求决定。 在 Bot 编排页面的“技能”区域,可为 Bot 配置所需技能。不懂插件时,可选择区域右上角的“优化”按钮让 AI Bot 根据提示词自动选择插件。也可自定义添加所需插件,点击插件区域的“+”号选择加入具体插件。 在 Bot 编排页面的“预览与调试”区域,可测试 Bot 是否按预期工作,可清除对话记录以开始新的测试,确保 Bot 能理解用户输入并给出正确回应。
2024-10-18
推荐一下个人可以使用的通过对话微调的模型
以下是一些个人可以使用的通过对话微调的模型相关信息: 会话补全(Chat completions): GPT3.5 系列中,gpt3.5turbo 和 textdavinci003 有相似能力,但 gpt3.5turbo 价格仅为 textdavinci003 的十分之一,在多数情况下更推荐使用 gpt3.5turbo。不过,gpt3.5turbo 不支持微调,从 2023 年 3 月 1 日起,只能对基于 GPT3.5 的模型进行微调。 微调(Finetuning): 案例研究: 客户支持聊天机器人:通常包含相关上下文、对话摘要及最近消息,可能需要几千个示例处理不同请求和客户问题,建议审查对话样本确保代理消息质量,可使用单独文本转换微调模型生成摘要。 基于技术属性列表的产品描述:将输入数据转换为自然语言很重要,确保完成基于所提供描述,若常查阅外部内容,自动添加此类内容可提高性能,若描述基于图像,提取图像文本描述可能有帮助。 模型(Models): GPT3.5 模型可理解和生成自然语言或代码,其中功能最强大、最具成本效益且针对聊天优化的型号是 gpt3.5turbo,建议使用它而非其他 GPT3.5 模型,因其成本更低。 gpt3.5turbo:功能强大,针对聊天优化,成本低,会使用最新模型迭代更新,最大 Token 数 4096,训练数据截至 2021 年 9 月。 gpt3.5turbo0301:2023 年 3 月 1 日的快照,不会更新,仅在 2023 年 6 月 1 日结束的三个月内提供支持,最大 Token 数 4096,训练数据截至 2021 年 9 月。 textdavinci003:能完成任何语言任务,支持文本中插入补全,最大 Token 数 4097,训练数据截至 2021 年 6 月。 textdavinci002:与 textdavinci003 类似,使用监督微调而非强化学习训练,最大 Token 数 4097,训练数据截至 2021 年 6 月。 codedavinci002:针对代码完成任务优化,最大 Token 数 8001,训练数据截至 2021 年 6 月。 请注意,OpenAI 模型具有不确定性,相同输入可能产生不同输出,将温度设置为 0 可使输出大部分具有确定性,但可能仍有少量可变性。
2024-10-18
国内能通过对话微调的语言大模型
以下是国内一些能通过对话微调的语言大模型: 教育领域:桃李(Taoli) 地址: 简介:在国际中文教育领域数据上进行了额外训练的模型,基于国际中文教育教材等构建资源库和问答数据集,并利用数据进行指令微调,让模型习得将知识应用到具体场景中的能力。 数学领域:chatglmmaths 地址: 简介:基于 chatglm6b 微调/LORA/PPO/推理的数学题解题大模型,样本为自动生成的整数/小数加减乘除运算,可 gpu/cpu 部署,开源了训练数据集等。 文化领域:Firefly 地址: 简介:中文对话式大语言模型,构造了许多与中华文化相关的数据,如对联、作诗、文言文翻译、散文、金庸小说等,以提升模型在这方面的表现。 金融领域: Cornucopia(聚宝盆) 地址: 简介:开源了经过中文金融知识指令精调/指令微调的 LLaMA7B 模型。通过中文金融公开数据+爬取的金融数据构建指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在金融领域的问答效果。基于相同的数据,后期还会利用 GPT3.5 API 构建高质量的数据集,另在中文知识图谱金融上进一步扩充高质量的指令数据集。 BBTFinCUGEApplications 地址: 简介:开源了中文金融领域开源语料库 BBTFinCorpus,中文金融领域知识增强型预训练语言模型 BBTFinT5 及中文金融领域自然语言处理评测基准 CFLEB。 XuanYuan(轩辕) 地址: 简介:国内首个开源的千亿级中文对话大模型,同时也是首个针对中文金融领域优化的千亿级开源对话大模型。在 BLOOM176B 的基础上针对中文通用领域和金融领域进行了针对性的预训练与微调,不仅可以应对通用领域的问题,也可以解答金融相关的各类问题,为用户提供准确、全面的金融信息和建议。
2024-10-18
与PDF对话
以下是关于与 PDF 对话的相关内容: AIGC 落地应用中,有 ChatWithPDF 官方 Pulgin 可解决 Chat GPT 无法阅读、解析 PDF 的问题,推荐指数为🌟🌟🌟🌟。还有 Voice control for ChatGPT Chrome 插件用于和 ChatGPT 语音对话,支持多种语言,可当英语口语/听力老师,但 TTS 效果生硬,期待改善,推荐指数🌟🌟🌟,下载地址: 增强的 PDF 结构识别框架(pdflux.com)应用于 ChatDOC(海外官网:chatdoc.com),它是 AI 文档阅读助手,能在数秒内总结长文档、解释复杂概念和查找关键信息,在可靠性和准确性方面居所有 ChatPDF 类产品之首。其优势包括精通表格理解、多文档对话、每个回答均可溯源至原文、支持多种文档类型。 阅读书籍、论文的互动式问答场景对应的关键词库有 15 个,如书籍、报告、文件等。ChatGPT 知识库截止于 2021 年 9 月,对于新数据或最新出版的内容无法提供答案,如有现成 PDF,建议通过 CHATDOC 网站进行互动式问答,并提供了输入信息和提出问题的步骤及模板,还有相关案例。
2024-11-13
多轮对话训练中你如何训练模型掌握情感需求
在多轮对话训练中,让模型掌握情感需求可以通过以下几种方式: 1. 利用相关数据集进行训练,例如: Guanaco:地址为,是一个使用 SelfInstruct 的主要包含中日英德的多语言指令微调数据集。 chatgptcorpus:地址为,开源了由 ChatGPT3.5 生成的 300 万自问自答数据,包括多个领域,可用于训练大模型。 SmileConv:地址为,数据集通过 ChatGPT 改写真实的心理互助 QA 为多轮的心理健康支持多轮对话,含有 56k 个多轮对话,其对话主题、词汇和篇章语义更加丰富多样,更符合长程多轮对话的应用场景。 2. 在创建提示时采用结构化模式,为模型提供一些情感需求的示例,如: |输入|输出| ||| |一部制作精良且有趣的电影|积极的| |10 分钟后我睡着了|消极的| |电影还行|中性的| 然后单击页面右侧的提交按钮。该模型现在可为输入文本提供情绪。还可以保存新设计的提示。 3. 在多轮次对话中,定期总结关键信息,重申对话的目标和指令,有助于模型刷新记忆,确保准确把握对话的进展和要点。 4. 进行意图识别和分类,特别关注在单一模型或情境中处理多个小逻辑分支的情况。例如在客户服务场景中,快速确定用户提出咨询、投诉、建议等多种类型请求的意图,并分类到相应处理流程中。
2024-11-11
在车载语音多轮对话训练中你如何训练模型掌握情感需求
目前知识库中暂时没有关于在车载语音多轮对话训练中如何训练模型掌握情感需求的相关内容。但一般来说,要训练模型掌握情感需求,可以从以下几个方面考虑: 1. 数据收集:收集包含丰富情感表达的车载语音对话数据,包括不同情感状态下的语音样本和对应的文本描述。 2. 特征提取:从语音和文本数据中提取能够反映情感的特征,如语音的语调、语速、音量,文本中的词汇、句式、语义等。 3. 模型选择:选择适合处理情感分析任务的模型架构,如基于深度学习的循环神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)等。 4. 情感标注:对收集的数据进行准确的情感标注,以便模型学习不同情感的模式。 5. 多模态融合:结合语音和文本等多模态信息,提高情感识别的准确性。 6. 优化算法:采用合适的优化算法来训练模型,调整模型的参数,以提高模型的性能。 7. 模型评估:使用合适的评估指标来评估模型在情感需求掌握方面的性能,并根据评估结果进行调整和改进。
2024-11-11
提供“与知识库对话”的产品服务
以下是关于“与知识库对话”的产品服务相关内容: 如果想要对知识库进行更加灵活的掌控,可以使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。构建本地知识库时,首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,接着选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 在商业化问答场景中,以一个问答机器人界面为例,其配置包括 AI 模型、提示词和知识库。模型好比是学习过无数知识的人,提示词是告诉模型扮演的角色和专注的技能,知识库则是给模型的工作手册。例如设定 AI 模型为阿里千问模型,提示词设定角色为“美嘉”,知识库放置《爱情公寓》全季剧情。 看十遍不如实操一遍,实操十遍不如分享一遍。如果对 AI Agent 技术感兴趣,可以联系相关人员或者加入免费知识星球(备注 AGI 知识库)。
2024-11-08
提供“与知识库对话”的产品服务
以下是关于“与知识库对话”的产品服务相关内容: 如果想要对知识库进行更加灵活的掌控,需要使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 的概念,可以创建独有的 Workspace 与其他项目数据隔离。构建本地知识库时,首先创建工作空间,然后上传文档并进行文本嵌入,接着选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案),最后进行测试对话。 在商业化问答场景中,以一个问答机器人界面为例,其左侧有三处配置:AI 模型、提示词、知识库。模型可以想象成学习过无数知识的人;提示词是告诉模型扮演的角色和专注的技能;知识库则相当于给模型发放的工作手册。例如设定 AI 模型为阿里千问模型,提示词设定角色为“美嘉”,知识库为《爱情公寓》全季剧情。
2024-11-08
图片对话模型有哪些
以下是一些常见的图片对话模型: ChatGLM: 地址: 简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。 VisualGLM6B: 地址: 简介:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。依靠来自于 CogView 数据集的 30M 高质量中文图文对,与 300M 经过筛选的英文图文对进行预训练。 ChineseLLaMAAlpaca: 地址: 简介:中文 LLaMA&Alpaca 大语言模型+本地 CPU/GPU 部署,在原版 LLaMA 的基础上扩充了中文词表并使用了中文数据进行二次预训练。 智谱·AI 开源的图片对话模型有: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。 代码链接: 模型下载:、始智社区 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。 代码链接: 模型下载: Visualglm6B:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 代码链接: 模型下载: 智谱·AI 开源的 Chat 模型有: ChatGLM6Bint4:ChatGLM6B 的 Int4 版本。最低只需 6GB 显存即可部署,最低只需 7GB 显存即可启动微调() 上下文 token 数:2K 代码链接: 模型权重下载链接:魔搭社区、始智社区、启智社区 ChatGLM6Bint8:ChatGLM6B 的 Int8 版本 上下文 token 数:2K 代码链接: 模型权重下载链接:魔搭社区、始智社区、启智社区 AgentLM7B: 简介:1. 提出了一种 AgentTuning 的方法;2. 开源了包含 1866 个高质量交互、6 个多样化的真实场景任务的 Agent 数据集 AgentInstruct;3. 基于上述方法和数据集,利用 Llama2 微调了具备超强 Agent 能力的 AgentLM7B、AgentLM13B、AgentLM70B。 上下文 token 数:4K 代码链接: 模型权重下载链接: AgentLM13B: 上下文 token 数:4K 模型权重下载链接: AgentLM70B: 上下文 token 数:8K 模型权重下载链接:
2024-11-08
如何用ai模型做训练
以下是关于如何用 AI 模型做训练的相关内容: 要在医疗保健领域让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和学徒实践开始,AI 也应如此。当前的学习方式存在问题,应通过堆叠模型训练,如先训练生物学、化学模型,再添加特定数据点。就像预医学生从基础课程学起,设计新疗法的科学家经历多年学习和指导,这种方式能培养处理细微差别决策的直觉。 大模型的构建过程包括: 1. 收集海量数据:如同教孩子博学多才要让其阅读大量资料,对于 AI 模型要收集互联网上的各种文本数据。 2. 预处理数据:像为孩子整理适合的资料,AI 研究人员要清理和组织收集的数据,如删除垃圾信息、纠正拼写错误等。 3. 设计模型架构:为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是复杂的神经网络,如 Transformer 架构。 4. 训练模型:像孩子开始学习,AI 模型开始“阅读”数据,通过反复预测句子中的下一个词等方式逐渐学会理解和生成人类语言。 为提高 AI 模型的鲁棒性,应对可能的“恶意”样本数据导致的幻觉,可使用对抗训练技术,让模型在训练中接触并学会识别和抵抗。
2024-11-13
大模型排名
以下是关于大模型排名的相关信息: 斯坦福发布了大模型排行榜 AlpacaEval,这是一种基于 LLM 的全自动评估基准,更加快速、廉价和可靠。项目链接:https://github.com/tatsulab/alpaca_eval ,排行榜链接:https://tatsulab.github.io/alpaca_eval/ 。 该排行榜分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在 GPT4 评估榜单中,GPT4 稳居第一,胜率超过 95%;Claude 和 ChatGPT 胜率都在 80%以上,分别排名第二和第三,Claude 以不到 3%的优势超越 ChatGPT。 开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco;Vicuna 发挥稳定,胜率超过 70%排在第六,紧追 Guanaco 65B;Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 团队已开源所有模型评估代码和分析数据,以及支持未来新模型榜单更新的测试工具,但它仍不是一个全面的模型能力评测系统,存在指令比较简单、评分可能更偏向风格而非事实、没有衡量模型可能造成的危害等局限性。 中国国内的大模型排名可能在短时间内会有变化,作为 AI 机器人无法提供最新的信息。要获取最新的中国国内大模型排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台,在会定期更新相关的排名报告,可以供您查阅。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
图生文模型
以下是关于图生文模型的相关信息: Kolors 是一款强大的开源文生图模型,具有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,展现了快手的技术实力。 Tripo AI 中,文生 3D 模型是用一段文字生成 3D 模型,在「Create」界面底部输入框输入提示词(不支持中文),不会写提示词可点击输入框左侧的</>按钮随机生成并自动填入。填写好提示词后点击右侧「Create」生成 3D 模型,每次生成 4 个基础模型,不满意可点击「Retry」重新生成。有满意的模型点击单个模型下方黄色的「Refine」精修,精修进度在「My Models」中查看,一般 5 分钟左右完成。图生 3D 模型是用一张图片生成 3D 模型,点击输入框右侧的图标上传图片即可生成,一次生成一个基础模型,同样支持重生成和精修。 Tusiart 文生图操作流程包括:定主题,确定生成图片的主题、风格和信息;选择基础模型 Checkpoint,找内容贴近的模型;选择 lora,寻找内容重叠的 lora 控制图片效果及质量;ControlNet 用于控制图片中特定图像;设置 VAE 无脑选择 840000;Prompt 提示词用英文写需求,单词和短语用英文半角逗号隔开;负向提示词 Negative Prompt 用英文写避免产生的内容,单词和短语组合并用英文半角逗号隔开;采样算法一般选 DPM++ 2M Karras,也可参考模型作者推荐的采样器;采样次数根据采样器特征,选 DPM++ 2M Karras 时一般在 30 40 之间;尺寸根据个人喜好和需求选择。
2024-11-13
大小模型协同有哪些设计,具体应用有哪些呢?
大小模型协同的设计主要包括以下方面: 1. 大型模型方面: 大型语言模型:专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,在更多样化的任务中应用。 2. 小型模型方面:通常是被设计来完成特定任务的。 其具体应用包括: 1. 人机协同模式: 模式一:以人为主导,大模型提供建议(copilot 阶段),如同副驾驶,开车时提供建议,决定权在人手中。 模式二:人和大模型协同工作,合作完成同一个工作(embedding 阶段),在实际工作场景中,一些小环节由大模型完成,提高效率。 模式三:人指挥大模型工作(数字员工阶段),但此阶段目前少见,大模型还不能完全独立完成具体工作,可能是工程或大模型能力欠缺导致。 当下努力方向应是从简单使用大模型得到建议,转变为让大模型深度融入工作流,形成有高价值的一套 agent。数字员工阶段尚不成熟,可由其他大厂和学界先多尝试。
2024-11-13
大小模型协同有哪些数据
大小模型协同的数据来源广泛且多样,主要包括以下方面: 大模型方面: 预训练数据非常大,往往来自于互联网,涵盖论文、代码以及可爬取的公开网页等,通常采用 TB 级别的数据进行预训练。 像 GPT3 这样的大模型参数众多。 例如 Gemini 模型,其预训练数据集使用来自网络文档、书籍、代码的数据,并包括图像、音频和视频数据。 小模型方面: 针对特定任务进行训练,数据主要由与任务相关的内容组成,如专门识别猫或狗的模型,其训练数据主要是猫猫狗狗的照片。 大模型具有更广泛的应用范围和更多的通识知识,能处理多种不同任务;小模型在特定任务上表现出色。但大模型的知识来源于有限的训练数据,并非无限,且知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。
2024-11-13
大模型排名以及排名的评测标准维度是什么
以下是一些常见的大模型排名及评测标准维度: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb: 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 斯坦福发布的大模型排行榜 AlpacaEval: 项目链接:https://github.com/tatsulab/alpaca_eval 排行榜链接:https://tatsulab.github.io/alpaca_eval/ 该研究团队选择了目前在开源社区很火的开源模型,还有 GPT4、PaLM 2 等众多「闭源」模型,甚至还开设了一个「准中文」排行榜。 AlpacaEval 分为以 GPT4 和 Claude 为元标注器的两个子榜单。 在斯坦福的这个 GPT4 评估榜单中: GPT4 稳居第一,胜率超过了 95%;胜率都在 80%以上的 Claude 和 ChatGPT 分别排名第二和第三,其中 Claude 以不到 3%的优势超越 ChatGPT。 值得关注的是,获得第四名的是一位排位赛新人——微软华人团队发布的 WizardLM。在所有开源模型中,WizardLM 以仅 130 亿的参数版本排名第一,击败了 650 亿参数量的 Guanaco。 而在开源模型中的佼佼者 Vicuna 发挥依然稳定,凭借着超过 70%的胜率排在第六,胜率紧追 Guanaco 65B。 最近大火的 Falcon Instruct 40B 表现不佳,仅位居 12 名,略高于 Alpaca Farm 7B。 AlpacaEval 的技术细节: 人类一致性:标注者与交叉标注集中人类多数票之间的一致性。 价格:每 1000 个标注的平均价格。 时间:计算 1000 个标注所需的平均时间。相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 AlpacaEval 评估模型的方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 1. 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 2. 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 3. 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。
2024-11-12
搭建个人知识库,请推荐的免费人工智能软件
以下为您推荐一些可用于搭建个人知识库的免费人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze 或 FastGPT 等工具可搭建知识库,但当下其 RAG 能力仅对问答场景友好,复杂企业级知识库场景可能需要专业团队,收费几万到几十万不等。若想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。 此外,还有一些相关工具和方法: 用通义听悟整理录音笔记:https://tingwu.aliyun.com 用 React 实现选中即解释 定义提示语提取有用信息:https://memo.ac/zh/ 开源免费屏幕录制工具 OBS,下载地址:https://obsproject.com/ Mac 用 Downie,Windows 推荐 IDM 淘宝数码荔枝店购买 用 losslessCut 快速切块:https://github.com/mifi/losslesscut 希望这些信息对您有所帮助。
2024-11-11
飞书和notion,在搭建个人知识库方面,各自的优点和缺点是什么
飞书在搭建个人知识库方面的优点: 可以方便地分类和整理知识,例如个人搭建某一领域知识库或企业搭建产品资料知识库。 有相关的分享和直播,能帮助用户轻松打造知识管理体系。 缺点: 随着知识库中信息增多,如果分类不合理,很难找到所需文章。 问题答案可能在文章某一段落,每次都需重新阅读文章才能找到答案。 Notion 在搭建个人知识库方面的优点: 是功能强大的知识管理和项目管理工具,可将各种信息 all in one place。 数据库可定制性高,接近关系型数据库,适合有相关需求的用户。 数据库的每一条记录都是一个页面,页面包含可自定义的属性和丰富内容。 支持的块类型非常丰富。 缺点:暂未提及。 此外,Notion 在创建知识库并上传文本内容方面,有特定的操作步骤,如在文本格式页签下选择 Notion 并进行授权,还可选择自动分段与清洗或自定义分段等方式。
2024-11-11
合适搭建个人知识库的人工智能软件有哪一些
以下是一些适合搭建个人知识库的人工智能软件: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 2. Coze:如果您想使用专门搭建个人知识库的软件,可参考文章 ,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API 。
2024-11-11
请根据提供的AI工具网址,搜索常用的AI工具,实际操作AI工具,记录使用过程中的感受和发现,提交一份体验报告,描述工具的使用过程和个人感受,并就AI相关的热点话题,AI伦理、AI与就业等简要发表自己的看法。
以下是一份关于常用 AI 工具的体验报告: 一、AI 工具使用过程和感受 1. 超级简历优化助手 使用过程:用户上传简历,工具分析内容并提供优化建议。 个人感受:对于求职者来说,能够针对性地提升简历质量,提高求职成功率,操作简单易懂。 2. 酷家乐等设计软件 使用过程:用户上传户型图,软件通过 AI 生成多种室内设计方案。 个人感受:为室内设计提供了便捷和丰富的创意,节省了设计时间和精力。 3. Amper Music 使用过程:用户提出需求,工具生成旋律和编曲。 个人感受:对音乐创作者有很大的辅助作用,激发创作灵感。 4. 松果倾诉智能助手 使用过程:通过文字或语音与用户交流,提供情感咨询。 个人感受:在情感支持方面提供了及时的帮助和建议。 5. 小佩宠物智能设备 使用过程:实时监测宠物的活动、饮食等状况,提供健康预警。 个人感受:让宠物主人能更方便地关注宠物健康。 6. 马蜂窝智能行程规划 使用过程:根据用户输入的目的地、时间等因素定制旅游路线。 个人感受:为旅行规划提供了个性化的方案,节省了规划时间。 7. 作业帮智能辅导 使用过程:根据学生的学习情况提供针对性的学习方案。 个人感受:有助于学生获得更贴合自身需求的学习辅导。 8. AI 游戏道具推荐系统 使用过程:在游戏中分析玩家风格和进度,推荐合适道具。 个人感受:提升了游戏体验,使玩家能更有效地获取所需道具。 9. AI 天气预报分时服务 使用过程:利用彩云天气提供每小时的天气预报。 个人感受:为出行和活动安排提供了更精准的参考。 10. AI 医疗病历分析平台 使用过程:分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 个人感受:有助于提高医疗诊断的准确性和效率。 11. AI 会议发言总结工具 使用过程:在会议中自动总结发言者的主要观点和重点内容。 个人感受:方便会议记录和回顾,提高工作效率。 12. AI 书法作品临摹辅助工具 使用过程:识别书法作品的笔画和结构,为用户提供临摹指导和评价。 个人感受:对书法爱好者的临摹学习有一定的帮助。 二、关于 AI 相关热点话题的看法 1. AI 伦理 随着 AI 技术的广泛应用,数据隐私、算法偏见等伦理问题日益凸显。需要建立健全的法律法规和伦理准则,确保 AI 的发展符合人类的价值观和利益。 2. AI 与就业 AI 的发展可能会导致一些传统岗位的减少,但同时也会创造新的就业机会,如 AI 开发、维护和管理等。重要的是通过教育和培训,提升劳动者的技能,以适应新的就业需求。 三、健身的 AI 产品 1. Keep:中国最大的健身平台,提供全面的健身解决方案,帮助用户实现健身目标。 2. Fiture:沸彻魔镜集硬件、丰富课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时提供指导。
2024-11-11
企业微信个人账户接入大模型
企业微信个人账户接入大模型可以参考以下内容: 基于 COW 框架的实现步骤: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 张梦飞同学写了更适合小白的使用教程: 。 可以实现:打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等等);常用开源插件的安装应用。 正式开始前需要知道:ChatBot 相较于在各大模型网页端使用区别,本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;本文只探讨操作操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入:微信、企业微信、公众号、飞书、钉钉等。 有多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等。 支持多消息类型:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多部署方法:本地运行、服务器运行、Docker 的方式。 全程白嫖拥有一个 AI 大模型的微信助手的实现步骤: 搭建,用于汇聚整合多种大模型接口,方便更换使用各种大模型,下面会告知如何白嫖大模型接口。 搭建,这是个知识库问答系统,把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答问题,如果不想接到微信去,自己用用,搭建完就可以,它也有问答界面。 搭建,里面的 cow 插件能进行文件总结、MJ 绘画的能力。
2024-11-06
我是小白,建立个人知识库,我应该怎么做
以下是建立个人知识库的一些方法: 1. 使用 GPT 打造个人知识库: 将文本拆分成若干小文本块(chunk)。 通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成向量,与向量储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 2. 按照张梦飞的【知识库】FastGPT+OneAPI+COW 带有知识库的机器人完整教程: 地址输入浏览器:http://这里替换为你宝塔左上角的那一串:3000/。 点击文件夹上方功能栏中的【终端】(注意不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 粘贴进入,点击回车。点击后,关闭此弹窗。 执行命令:cp configtemplate.json config.json 。 刷新页面,在当前目录下找到 config.json 文件进行修改。 删除文件里的所有代码,复制提供的代码并粘贴到文件里,修改第 4、5 行的 API 和 key 后保存并关闭文件。 3. 手把手教你本地部署大模型以及搭建个人知识库: 若要更灵活掌控知识库,可使用额外软件 AnythingLLM,其包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中有 Workspace 的概念,可创建独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间,上传文档并在工作空间中进行文本嵌入,选择对话模式(Chat 模式:大模型根据训练数据和上传的文档综合给出答案;Query 模式:大模型仅依靠文档中的数据给出答案),完成配置后即可进行测试对话。 总之,建立个人知识库需要根据您的具体需求和技术水平选择合适的方法,并进行相应的操作和配置。
2024-11-05