Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

AI可以做社会学模拟实验吗

Answer

AI 可以做社会学模拟实验。例如,在游戏领域,有过类斯坦福小镇游戏——伊甸岛,它既是游戏也是基于 Generative AI 的社会实验虚拟模拟。在这个模拟中,让每个 AI 都有自己的角色身份,通过 AI 与 AI 以及 AI 与玩家的互动,产生可归纳枚举的游戏行为,最后进行剧情包装时,让 AI 根据自身和玩家的行为通过大语言模型进行二次创作,类似 AI 剧本杀。另外,也期待看到更多使用基础模型进行模拟社会科学的研究,通过不同方式 prompt 基础模型并观察相关性,来复制社会科学中的一些显著成果。现代人工智能还有一个有前途的应用是建立“可重复的角色”,具有某些特征的有效行为像人类的实体,可在其上进行物理科学中典型的大规模可重复实验。

Content generated by AI large model, please carefully verify (powered by aily)

References

质朴发言:吐血整理:AI 大模型浪潮涌动游戏范式革新|Z 沙龙第 9 期

[title]质朴发言:吐血整理:AI大模型浪潮涌动游戏范式革新|Z沙龙第9期[heading1]#二、游戏+AI制作讨论[heading2]3、游戏与AI的结合会产生哪些问题?我们自己做过类斯坦福小镇游戏——伊甸岛,这款游戏既是一个游戏,也是一个基于Generative AI的社会实验虚拟模拟。要思考这项技术的成熟度,与其他产品相比,如存在多年并用类似GPT技术的AI,我们的产品有何不同?如果将其置于虚拟世界中,是否会使这个Agent更实体化?我们从设计上规避了一些AI的不成熟之处,类似TPF。我们当时的规避策略是不让生成式AI去完全生成剧情,它不再是一个“上帝模型”。我们让每一个AI都有自己的角色身份,然后通过AI与AI之间的互动,AI与玩家之间的互动,产生一些可以归纳枚举的游戏行为。最后进行剧情包装时,我们让AI根据自身和玩家的行为,通过大语言模型进行二次创作,生成的内容有点像AI剧本杀。

OpenAI联创:RLHF是超级智能的秘密武器

[title]OpenAI联创:RLHF是超级智能的秘密武器[heading1]RLHF研究的最新进展Dwarkesh Pa tel:下面让我们聊聊科研相关的问题。社科领域有很多研究成果都很难复现,你觉得机器学习领域,有多少研究是真正扎实的科学,又有多少可能是类似社科领域为了让结果更显著而操纵数据的p-hacking?John Schulman:目前确实存在一些对ML研究批评的声音,但其实机器学习领域的学术环境还是比较健康的,尤其是和社科这样的其他学科相比。机器学习研究大部分都是基于实际应用,要真正出成果。如果研究成果很难被复制,那很快就会被大家忘记。现在仅仅引用他人论文中的数据是不够的,研究人员通常需要尝试复现别人的研究方法,然后在相同的数据集上做测试,验证方法的有效性和可重复性。如果一个研究方法实现起来非常困难或者结果难以重复,这种方法很可能会被学术界遗忘,所以很多研究人员会开源他们的研究。当然,这个领域也有一些不好的激励机制,比如故意选用较低的基线方法做比较,或者故意增加方法的数学计算复杂度。但总体上,我觉得这个领域正在不断进步。我希望能够有更多的科学研究去深入理解事物的本质,而不仅仅是在基准测试上不断改进和提出新方法。最近在这方面已经有了一定的进展,但仍需要更多的努力,这对整个学术界的发展都有好处。另外,我非常期待看到更多使用基础模型进行模拟社会科学的研究。模型包含了对整个世界的概率分布描述,可以设置一个模拟问卷或对话来观察与其他不同特征和变量的相关性。如果研究人员能够通过不同方式prompt基础模型并观察相关性,来复制社会科学中的一些显著成果,比如道德基础理论等,会是非常酷的事。

沃尔夫勒姆:人工智能能解决科学问题吗?

[title]沃尔夫勒姆:人工智能能解决科学问题吗?[heading2]超越“精确科学”What kind of science can we expect to build on the basis of what a “societal observer” measures?For the most part,we don’t yet know.There’s some reason to think that(as in the case of physics and metamathematics)such measurements might tap into pockets of computational reducibility.And if that’s the case,we can expect that we’ll be able to start doing things like making predictions—albeit perhaps only for the results of “AI measurements” which we’ll find hard to interpret.But by connecting such AI measurements to computational language,there seems to be the potential to start constructing “formalized science” in places where it’s never been possible before—and in doing so,to extend the domain of what we might call “exact sciences”.我们可以期望在“社会观察者”测量的基础上建立什么样的科学?在大多数情况下,我们还不知道。有理由认为(就像物理学和元数学的情况一样)此类测量可能会利用计算可简化性。如果是这样的话,我们可以预期我们将能够开始做诸如预测之类的事情——尽管可能只是针对我们发现很难解释的“人工智能测量”的结果。但是,通过将此类人工智能测量与计算语言联系起来,似乎有可能开始在以前不可能的地方构建“形式化科学”,并在此过程中扩展我们所谓的“精确科学”的领域。(By the way,another promising application of modern AIs is in setting up “repeatable personas”:entities that effectively behave like humans with certain characteristics,but on which large-scale repeatable experiments of the kind typical in physical science can be done.)(顺便说一句,现代人工智能的另一个有前途的应用是建立“可重复的角色”:具有某些特征的有效行为像人类的实体,但可以在其上进行物理科学中典型的大规模可重复实验。)

Others are asking
图像对比与图像搜索这块,有没有哪个ai大模型做的比较好比较深入的
在图像对比与图像搜索方面,以下是一些相关的 AI 大模型特点和应用: RAG(检索增强生成):通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG 是一个检索生成框架,能够支持在本地运行。 AI 搜索:结合了多种能力,如 fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容。一些 AI 搜索平台专注于特定领域,如为程序员提供代码搜索。 多模态大模型:像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。 生成式模型和决策式模型:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。
2024-12-25
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
最好用的会计AI
以下是关于会计 AI 的相关信息: 生成式 AI 在金融服务领域,包括会计方面,具有多方面的应用和优势: 1. 预测方面:能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并适应模型为公司决策提供依据。 2. 报告方面:可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务方面:能够帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。 4. 采购和应付账款方面:能够帮助自动生成和调整合同、采购订单和发票以及提醒。 金融服务公司利用历史金融数据微调大型语言模型或从零开始训练模型,能够迅速回答几乎任何金融问题。金融服务行业准备使用生成式人工智能实现个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告这五个目标。 目前没有专门针对“最好用的会计 AI”的明确推荐,但您可以参考以上生成式 AI 在金融和会计领域的应用特点,结合自身需求进行选择。同时,营销领域有一些常用的 AI 工具,如 Synthesia、HeyGen、Jasper AI、Copy.ai、Writesonic 等,更多相关产品可查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。但请注意内容由 AI 大模型生成,请仔细甄别。
2024-12-25
可以对数据进行分析,生成报表的AI工具或网站
以下是一些可以对数据进行分析并生成报表的 AI 工具或网站: 1. 在金融服务领域,生成式 AI 能够帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,还能在会计和税务、采购和应付账款等方面提供帮助。 2. 对于撰写专业区域经济报告,可利用 AI 搜索与权威网站结合获取关键数据,将报告内容拆分处理,借助传统工具如 Excel 结合 AI 指导操作数据筛选与图表生成,利用 AI 辅助分析后撰写报告初稿,但最终内容需人工主导校验。 3. 一些具体的工具和网站包括: PandasAI:将 Pandas DataFrame 转换为“聊天机器人”,用户可以以自然语言提问,它会以自然语言、表格或图表形式回答,目前仅支持 GPT 模型,需自备 OpenAI API key。网址:https://github.com/gventuri/pandasai DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。网址:https://datasquirrel.ai/
2024-12-25
如何做面向高中生,专注于AI应用的培养项目
以下是一些面向高中生专注于 AI 应用的培养项目的建议: 1. 课程开发:包括 K12、本科和社区学院的人工智能相关领域的课程开发,以及技术伦理方面的课程开发。 2. 支持非正式教育活动:为 K12 学生提供参与人工智能系统的非正式教育活动支持。 3. 实现教育公平:努力为传统上在人工智能领域代表性不足的人群和地理区域提供公平的 K12 人工智能教育。 4. 教师培训:为 K12 教师提供人工智能及相关领域的培训和专业发展项目。 5. 提高研究人员留存率:努力提高专注于人工智能系统的研究人员在高等院校和其他非营利研究机构的留存率。 6. 公众教育:开展普及人工智能用途及其社会影响的宣传项目。 7. 评估活动:对开展的相关活动进行评估。 在教学中,要注意以下几点: 1. 对于写作等方面,如果让学生使用 AI,要先让他们了解什么是好的写作,找到自己的创造性声音。 2. 决定使用 AI 时,要根据学习任务来考虑,以学习目标驱动 AI 的使用,而非相反。 3. 例如在编程教学中,可能先让学生手动编码,掌握语言后再将 AI 生成的代码作为节省时间的工具;而在健康课程中,重点可能在于帮助学生设计健康活动,对使用生成式 AI 编写代码的限制可能不同。
2024-12-25
最好的制作ppt的ai是谁?
目前在制作 PPT 方面表现出色的 AI 工具包括以下几种: 1. GPT4:可以帮助生成 PPT 大纲,但生成符合要求的大纲可能较为耗时。 2. WPS AI:能够基于大纲快速生成 PPT,还可以进行二次修改,如修改主题配色和字体等。 3. Gamma:免费版本就能生成质量较高的 PPT,在内容组织、设计美观度和整体专业感方面表现卓越。 您可以根据自己的需求和使用习惯选择适合的工具来制作 PPT。
2024-12-25