直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

在tensorflow中实现分词器tokenizer

回答

在 TensorFlow 中实现分词器(tokenizer)的方法如下:

  1. 对文本数据进行预处理,添加开始和结束特殊标记。
  2. 通过使用 TensorFlow 的文本矢量化模块,可以创建分词器。创建分词器后,可以将文本中的词转换为索引,例如像“开始标记”“猫”“狗”等。
  3. 在 Stable Diffusion 中,Tokenizer 首先将 Prompt 中的每个词转换为一个称为标记(token)的数字,这是计算机理解单词的方式。然后,通过 text_encoder 将每个标记都转换为一个 768 值的向量,称为嵌入(embedding),用于 U-Net 的 condition。
  4. 需要注意的是,prompt 的长度会占用 token 数量。在大型语言模型中,输入的文本会被分词器拆分成一串 token 序列输入给模型,每个 token 通常对应一个单词或字符串片段。不同的分词器有不同的分词策略和词表,对于同一个 prompt,可能得到不同的 token 数。很多大模型对输入长度有限制,比如 GPT-3 接受的最大 token 数是 2048。因此,要控制好 prompt 的长度,可使用一些技巧来节省 token 数,如使用简洁的词语、缩写/代词替代复杂词组、去除不必要的标点和空格、小写替代部分大写单词等。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

8. 创建图像描述模型

03:54一个随机的例子,每对图像和文字对我来说都很有意义。如此宽的盘子,上面有烤三明治、薯条和薯条。和另一个图像的另一个标题。04:11我们有很多形象。所以如果你想看另一个例子,你可以再次运行这个单元格,你会看到另一个例子。让我们继续吧。04:24因此,由于我们有文本数据,我们需要以某种标准方式预处理该文本数据。因此,在此单元格中,我们添加开始和结束特殊标记,我们也在幻灯片中讨论过。04:41所以通过添加这个,我们可以将这个标记作为一种特殊符号来处理,这个开始说话意味着特殊标记,这意味着句子的开头。04:54同样,结束标记表示句子的结尾。所以我们可以像趋势图一样添加这些东西并传递这个函数。05:07他们让我们继续前进。这是一个非常重要的预处理。所以现在我们有文本数据,标题数据。所以我们要创建分词器。所以通过创建分词器,我们可以分词05:29像一些索引的开始标记或猫或狗。在TensorFlow中,这非常容易。您可以只使用此文本矢量化模块,您可以通过传递所有数据或标题数据来调用

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

同时我们还可以看到Tokenizer文件夹,表示标记器。Tokenizer首先将Prompt中的每个词转换为一个称为标记(token)的数字,符号化(Tokenization)是计算机理解单词的方式。然后,通过text_encoder将每个标记都转换为一个768值的向量,称为嵌入(embedding),用于U-Net的condition。Tokenizer的作用有时候我们运行完pipeline之后,会出现纯黑色图片,这表示我们本次生成的图片触发了NSFW机制,出现了一些违规的图片,我们可以修改seed重新进行生成。我们可以自己设置seed,来达到对图片生成的控制。将pipeline的完整结构梳理好之后,我们再对一些核心参数进行讲解:

问:Prompt 长度是否占用 token?

是的,prompt的长度会占用token数量。在大型语言模型中,输入的文本会被分词器(tokenizer)拆分成一串token序列输入给模型。每个token通常对应一个单词或字符串片段。token的数量就决定了输入序列的长度。所以,prompt中包含的每个单词、标点符号等都会被视为一个token,从而占用token数量。不同的分词器有不同的分词策略和词表,对于同一个prompt,可能得到不同的token数。但总的来说,prompt越长,占用的token数就越多。很多大模型对输入长度有限制,比如GPT-3接受的最大token数是2048。这就要求控制好prompt的长度,否则会被截断或产生不准确的结果。一些技巧可以用来节省prompt的token数:1.使用简洁的词语,避免冗余2.缩写/代词替代复杂词组3.去除不必要的标点和空格4.小写替代部分大写单词总之,prompt长度对应的token数需要根据具体任务合理控制,以在保证效果和节省计算的间权衡取舍。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。内容由AI大模型生成,请仔细甄别。

其他人在问
tensorflow和stable diffusion的结合
TensorFlow 和 Stable Diffusion 的结合涉及以下方面: Stable Diffusion 的基本原理: 生成随机噪声,并逐步更改噪声以努力获得与提示一致的图像。 基本结构是 encoder + diffusion + decoder 的流程。 Checkpoint 记录某个训练周期整个 diffusion 及可能的 encoder decoder 的参数。 VAE 是 encoder decoder 的参数,在大型模型中需配对以避免花屏现象。 Stable Diffusion 的技术原理: 核心技术来源于 Patrick Esser 和 Robin Romabach,基于潜扩散模型(Latent Diffusion Model)研究。 使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,捕捉语义信息并与图像空间对齐。 利用扩散模型将随机噪声图像逐渐变换为目标图像,从训练数据中学习概率分布并采样新数据。 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每步变换的概率分布,以根据文本指导收敛并保持图像质量。 Stable Diffusion 训练数据集制作: 设置 max_data_loader_n_workers 大于等于 2 加速数据处理。 数据标注流程包括使用 BLIP 进行自然语言自动标注和使用 Waifu Diffusion v1.4 模型自动标注 tag 标签。 调用 Waifu Diffusion v1.4 模型需安装特定版本(2.10.0)的 TensorFlow 库,可通过命令行检查与安装适配。
2024-09-23
我想要实现一个微信ai客服,怎么弄呢
要实现一个微信 AI 客服,您可以参考以下两种方法: 方法一: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时会告诉您如何白嫖大模型接口。 2. 搭建,这是一个知识库问答系统,将知识文件放入其中,并接入上面的大模型作为分析知识库的大脑,最后回答您的问题。如果不想接到微信,自己使用,搭建完此系统即可,它也有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画等。 方法二: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库内容不足,则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 “AI 前线”能发布在您的微信公众号上,作为微信客服助手。 2. 准备以下内容: 根据 Bot 的目的、核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 整理。 创建一个自己的【知识库】,用于回答 AI 相关知识。 由于“AI 前线”要按照一定规则处理知识,创建一个【工作流】,控制 AI 按要求处理信息。 准备好自己的微信公众号,以便将机器人发布在微信公众号上。 以上就是实现微信 AI 客服的两种方式及具体步骤。
2024-12-20
计算两个文本的相识度代码实现
以下是关于计算两个文本相似度的代码实现相关内容: 在文本处理中,文本会先转为 tokens,再转为向量,然后放到计算机中运算以找出规律。在文本转为向量后,可以通过欧式距离或 cosin 角度来计算两个文本之间的相似性。例如,使用 SBERT 算法时,对于描述主体相同的情况(如屏幕相关的描述)会设为高相似性。文本统计单位“1”通常是以二级类别来衡量,比如屏幕模糊,它包括画面模糊、边缘模糊、文本模糊等细分情况。若要统计三级类别,目前多采用人工统计。同时,文本统计单位“1”是一个 clustering 概念,因为在向量空间中难以找到完全相同的两个单位,更多是距离较近的单位,所以统计通常以 clustering 计算。 另外,在初级菜鸟学 Langchain 实录中,对于文本相似度检索过程,包括读入文字、进行文字清洗、文本句子切分、文本向量化、计算相似度以及取前几的答案等步骤,详情可见 https://github.com/yuanzhoulvpi2017/DocumentSearch 。
2024-12-19
目前我已经有了一个可以文生视频或者图生视频的模型但是只能6秒,我要如何利用agent自动流实现这个模型可以生成更长,更可靠质量的视频呢
要利用 agent 自动流实现生成更长、更可靠质量的视频,您可以参考以下几种模型和方法: 1. PixVerse V2 模型: 8 秒的视频生成需要花费 30 Credits,5 秒的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。 目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,视频时长。图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. Meta Movie Gen 模型: Movie Gen 由视频生成和音频生成两个模型组成。 Movie Gen Video:30B 参数 Transformer 模型,可以从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens。对于精确视频编辑,它可以执行添加、删除或替换元素,或背景替换、样式更改等全局修改。对于个性化视频,它在保持角色身份一致性和运动自然性方面取得 SOTA 性能。 Movie Gen Audio:13B 参数 Transformer 模型,可以接受视频输入以及可选的文本提示,生成与视频同步的高保真音频。 Movie Gen Video 通过预训练微调范式完成,在骨干网络架构上,它沿用了 Transformer,特别是 Llama3 的许多设计。预训练阶段在海量的视频文本和图像文本数据集上进行联合训练,学习对视觉世界的理解。微调阶段研究人员精心挑选了一小部分高质量视频进行有监督微调,以进一步提升生成视频的运动流畅度和美学品质。为了进一步提高效果,模型还引入了流匹配(Flow Matching)作为训练目标,这使得视频生成的效果在精度和细节表现上优于扩散模型。 3. Sora 模型: 文生视频,图生视频,视频生视频,支持多种视频定制选项,如分辨率(从 480p 到 1080p)、视频长度(从 5 秒到更长时间)和视频风格。用户可以浏览社区共享的视频,获取灵感和学习技巧(直接抄别人 prompt)。 故事板:允许用户通过时间线指导视频中的多个动作,创建更加复杂的视频序列。 混音和编辑:提供视频混音功能,允许用户将视频转换成新的风格。支持视频的延伸和剪辑,以及创建循环视频。 高级功能:包括混合功能,可以将两个视频场景合并成一个新的场景。 对于已经拥有 OpenAI Plus 或 Pro 账户的用户,Sora 的使用是包含在现有订阅中的,无需额外支付费用。OpenAI Plus 订阅每月 50 次视频生成次数;OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可以根据需要选择更高分辨率的视频生成,但这可能会减少每月的使用次数。Sora 的发布初期,对于某些地区(如欧洲和英国)可能会有延迟。
2024-12-19
nova有个图生视频的功能,但是只能生成6秒钟,我要如何组合服务去实现可以文生长视频并且也可以图生长视频呢
以下是一些实现文生长视频和图生长视频的方法: 1. 使用 PixVerse V2 模型: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择。目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,您可以通过在提示词中加入“Anime”,“Realistic”等词语做到这点。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,图生视频暂不支持“Magic Brush”、“Camera Motion”、“Motion Strength”等功能,如需要使用上述功能,请将模型切换至“PixVerse V1”。 2. 利用 runway: 视频的大部分片段用 runway(https://app.runwayml.com/)制作,少数的片段用的是即梦(https://jimeng.jianying.com/aitool/home)的动效画板和首尾帧。 以汽车内饰这一片段为例,登录 runway 账户后,在首页的左侧点击“Text/Imagine to Video”,中文即是“文生视频/图生视频”。点击 2 处将汽车内饰的图片上传到 runway 中。其中 1 处可以更改生成图片所用到的大模型版本,数字越大代表模型越强。目前只有 Gen2 每天有免费额度。3 处用于输入提示词。4 处可以修改生成的视频时长为 5s 或 10s,时长越长,生成的效果可能越不稳定。5 处可以看到生成的结果。提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”是,即摄像机围绕垂直轴顺时针旋转,常用于创造动态的、有时令人眩晕的视觉效果。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词该如何填写呢?可以参照:。runway 对于这些专有的运镜方式理解的很好。其他的提示词可以不填,先看看效果,如果效果不好,再补充简短的提示词重新生成视频。很多时候提示词过多,生成的视频就很怪异,像吃了毒蘑菇后看到的幻觉一样。改变提示词,改变生成时长,多抽卡几次,毕竟 runway 会员可以无限抽卡。 3. 海外产品 viva: viva 发布了首个开放给全部用户使用的 Sora 同架构视频生成模型,而且现阶段免费。支持文本生成视频、图片生成视频以及 4K 分辨率放大功能,另外也支持提示词的自动优化。文生视频单次可以生成一条 5 秒的视频,图生视频是 4 秒视频。
2024-12-19
推荐一个大模型,可以实现特定人的声音,朗读文字
以下为您推荐可以实现特定人声音朗读文字的大模型及相关工具: 大模型方面:包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 语音合成(TTS)工具: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 Eleven Labs:https://elevenlabs.io/ ,ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 Speechify:https://speechify.com/ ,Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 此外,上述算法开源的代码有很多,例如: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition 除了算法,人物建模模型可以通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型)实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音,TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作,数字人如何使用知识库,做出某个领域的专业性回答等。
2024-12-18
推荐一个生成bpm系统产品原型图的ai工具,可以实现文字输入,甄别分析后直接生成原型图,并且导入Figma或者Axure可以二次编辑
以下是为您推荐的可生成 BPM 系统产品原型图、用于产品原型设计或绘制示意图的 AI 工具: 1. 即时设计:https://js.design/ 这是一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 5. UIzard:是一个利用 AI 技术生成用户界面的工具,它可以根据设计师提供的信息快速生成 UI 设计。 6. Figma:是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma 的社区也开发了一些 AI 插件,用于增强设计流程。 7. Sketch:是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用 AI 技术来辅助设计工作,例如自动生成设计元素等。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-17