Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI的关键技术有哪些,比如langchain

Answer

AI 的关键技术包括以下方面:

  1. 编排(Orchestration):涉及到的公司如 DUST、FIAVIE、LangChain 等提供的工具帮助开发人员管理和协调各个部分和任务,以确保系统的流畅运行。
  2. 部署、可扩展性和预训练(Deployment, Scalability & Pre-Training):这个类别的公司如 UWA mosaicm、NMAREL、anyscale 等提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及在模型使用前进行预训练。
  3. 上下文和嵌入(Context & Embeddings):这个类别的公司如 TRUDO,Llamalndex,BerriAI 等提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可以理解的形式。
  4. 质量保证和可观察性(QA & Observability):这个类别的公司如 Pinecone,drant,Vald 等提供工具,以确保模型的表现,并能够监控模型的性能和状态。

LangChain 作为一个框架,具有以下特点和作用:

  1. 与 RAG 的关系:作为一个框架,为 RAG 提供了实现所必需的工具和组件。允许开发者通过其模块化组件来构建 RAG 应用程序,简化了 RAG 应用程序的开发过程,提高性能,支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。
  2. 在 ProductHunt 2023 年度最佳产品榜单中的表现:入围了 AI Infra 类别,帮助 AI 创作者为他们的产品选择合适的 AI API 并在它们之间切换,快速创建和部署 LLM 插件或 LLM 应用程序,以及追踪和调试复杂的 LLM 应用程序。例如,Langfuse 为大模型应用提供开源可观测性和分析功能;Langdock 可在几分钟内创建、部署、测试和监控 ChatGPT 插件。
Content generated by AI large model, please carefully verify (powered by aily)

References

Generative AI的开发工具和基础设施的趋势

这张图描绘了Generative AI的开发工具和基础设施的趋势。它代表了在AI开发领域中,为满足不同需求,工具和基础设施正在逐渐模块化和专业化的趋势。图中的公司被分组到以下四个主要类别:1.Orchestration(编排):涉及到的公司(如DUST、FIAVIE、LangChain等)提供的工具帮助开发人员管理和协调各个部分和任务,以确保系统的流畅运行。2.Deployment,Scalability,& Pre-Training(部署,可扩展性和预训练):这个类别的公司(如UWA mosaicm、NMAREL、anyscale等)提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及在模型使用前进行预训练。3.Context & Embeddings(上下文和嵌入):这个类别的公司(如TRUDO,Llamalndex,BerriAI等)提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可以理解的形式。4.QA & Observability(质量保证和可观察性):这个类别的公司(如Pinecone,drant,Vald等)提供工具,以确保模型的表现,并能够监控模型的性能和状态。这些类别和公司的出现代表了人工智能技术的复杂化和专业化。随着技术的发展,更多专门针对不同AI开发阶段的工具和服务正在被开发和使用,这有助于提高开发效率和模型质量。

问:LangChain 和 RAG 有什么关系?

1.框架与技术:LangChain作为一个框架,提供了实现RAG所必需的工具和组件。RAG作为一项技术,可以在LangChain框架内得以实施和利用。2.模块化实现:LangChain允许开发者通过其模块化组件来构建RAG应用程序,例如使用LangChain的检索器(Retriever)和生成模型(LLM)来创建一个完整的RAG流程。3.简化开发:LangChain通过提供现成的链(Off-the-shelf chains)和提示模板(Prompt Templates),简化了RAG应用程序的开发过程。4.提高性能:利用LangChain实现RAG可以帮助开发者创建更高效、更准确的应用程序,特别是在需要大量外部信息来辅助决策的场景中。5.应用构建:LangChain通过其丰富的API和组件库,支持开发者构建复杂的RAG应用,如智能问答系统、内容推荐引擎等。总的来说,LangChain为RAG提供了一个强大的基础设施,使得开发者可以更容易地实现复杂的、基于LLM的应用程序,同时RAG作为LangChain支持的关键技术之一,能够帮助应用程序更好地利用外部知识源,提升应用的性能和准确性。内容由AI大模型生成,请仔细甄别

ProductHunt 2023 年度最佳产品榜单

随着越来越多的AI模型和产品的出现,帮助构建、改进和监控它们的工具变得比以往任何时候都更加重要,因此几年的奖项又出现了一个新的类别。这个类别的入围者帮助AI创作,者为他们的产品选择合适的AI API并在它们之间切换(如EdenAI)、快速创建和部署LLM插件(如Langdoc)或LLM应用程序(如LLM Spark),以及追踪和调试复杂的LLM应用程序(如Langfuse)。Langfuse(免费可用)——大模型应用的开源追踪和分析工具:Langfuse为大模型应用提供开源可观测性和分析功能。可观测性:在可视化界面中探索和调试复杂的日志和追踪。分析:使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。Eden AI(免费可用)——将顶尖AI API融合为一:将Eden AI集成到产品中,实现以下目标:通过为每项AI任务选择正确的AI API来提高准确性和降低成本通过集中管理使用限制和成本监测,让你更加放心不断探索市场上新兴的AI能力。Langdock(免费可用)——在几分钟内创建、部署、测试和监控ChatGPT插件:将你的API连接到Langdock,并将其作为插件部署到所有大模型应用中,如ChatGPT和LangChain(Bing和Bard即将推出)。然后使用Langdock内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。

Others are asking
如何驯化ai
驯化 AI 可以从以下几个方面考虑: 1. 对于特定领域的 AI,开发具有潜在空间层次结构的堆叠模型,帮助其理解模式和关系。这可能会平行于人类教育范例发展,并可能形成针对特定任务专门设计的神经架构。 2. 创造多样化的专家 AI,在编码、数据和测试方面采用不同方法,并提供多个意见。 3. 让 AI 从在线基础转移到现实世界,让熟练的人类专家配备可穿戴设备,收集现实世界的互动供其学习。 4. 让专家 AI 接触顶级从业人员的多样化视角,避免复制危险的偏见。 5. 认识 AI 时,可将其视为黑箱,只关注其能理解和输出自然语言。例如,对于不具备理工科背景的人,不必深究其内部原理,知道其是模仿人类思维的工具即可。 6. 驱动 AI 工具时,要像传统道教的拘灵遣将一样,通过特定文字和仪轨程式引用已有资源,驱使它达成预设效果。同时,基于其“非人”的一面,要尽可能通过清晰的语言文字压缩其自由度,包括清晰告知任务、边界、目标、实现路径方法,甚至直接提供所需的正确知识。
2025-02-05
如何学习ai做视频
以下是学习使用 AI 做视频的步骤和相关工具推荐: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 相关工具推荐: 动画工具:用于在视频中为人脸制作动画的 DiD,用于从文本创建视频的 Runway v2。 语音克隆:ElevenLabs
2025-02-05
小白如何开始学习AI之路呢
对于小白来说,开始学习 AI 之路可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 此外,还有像二师兄这样的案例,他在七彩虹的售后群接触到 AI 绘画,通过下载安装包和教学视频迈出了第一步,之后不断学习和实践,包括炼丹、尝试项目等。您也可以借鉴他人的经验,找到适合自己的学习方式。
2025-02-05
教我怎么做AI绘画
以下是关于学习 AI 绘画的一些指导: 1. 您可以体验《AI 绘画助手》,它是一位专业且贴心的学习导师。无论您是新手小白还是进阶爱好者,都能为您提供优质实用的指导。它能将复杂的神经网络、生成对抗网络以及卷积神经网络等知识用通俗易懂的语言解释清楚,让您理解 AI 绘画背后的机制。对于市面上流行的 AI 绘画工具如 DALLE、MidJourney、Stable Diffusion 等,它不仅熟悉,还能介绍使用步骤和独特之处,帮助您找到适合自己的工具。它擅长风格迁移技术、生成对抗网络在图像生成和编辑中的应用,以及获取高分辨率精美图像的方法,并传授关键要点和操作技巧。它还拥有丰富的实战案例经验,能为您答疑解惑并规划学习路径。 网址:https://www.coze.cn/store/bot/7387381204275904521?panel=1&bid=6d1aji2c86g1m 2. 学习 Recraft 的效果和教程: 视频教程:【【AI 绘画】新皇登基!Recraft 力压 SD、Flux、MJ!【新手教程】】 图文教程: 打开网址:https://www.recraft.ai/invite/r8D2TaM6b2 选择 hard flash 输入提示词 3. 线稿上色 Midjourney + Stable Diffusion 教程: 先使用 Midjourney 生成线稿,然后用 PS 稍微修正错误的地方,再用 Controlnet 控制,最后用 Stable Diffusion 上色。多套 AI 组合使用,可以快速生成效果惊艳的图。 Midjourney 生成线稿的关键词:Black and white line drawing illustration of a cute cat cartoon IP character,black line sketch,wearing a fortune hat,wearing a collar around the neck,Carrying a huge bag containing scrolls and ingots,matching rope and straps at his wrists,Chinese element style,popular toys,blind box toys,Disney style,white backgroundniji 5style expressive 希望这些内容对您学习 AI 绘画有所帮助。
2025-02-05
AI应用有哪些好的方向
以下是一些 AI 应用的好方向: 1. 医疗药品零售领域: 药品推荐系统:利用机器学习算法分析用户数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据等因素,预测药品需求量,优化库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可通过手机拍摄药品图像,AI 系统自动识别并提供相关信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手回答顾客关于购药、用药、保健等常见问题,减轻人工客服工作压力。 药店运营分析:AI 分析药店销售、顾客流量、库存等大数据,发现潜在运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉等技术,AI 自动检测药品包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 实现全流程药品溯源,确保药品供应链的安全性和真实可信度。 2. 改善大模型产品的使用体验,使其面对细分领域需求时变得更好用。 3. 助力用户工作流,对已有场景进行优化。 4. 细分场景独立实用工具。 5. AI 社区。 6. Chatbot。 7. 医疗保健: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:为患者提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 8. 金融服务: 风控和反欺诈:降低金融机构风险。 信用评估:帮助金融机构做出贷款决策。 投资分析:辅助投资者做出投资决策。 客户服务:提供 24/7 服务,回答常见问题。 9. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 10. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 11. 交通运输:(具体应用未详细列举)
2025-02-05
我该怎么利用这个网站学习AI
以下是利用这个网站学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 这个网站的功能包括: 1. 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,可以复制到 AI 对话网站来使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 使用 AI 进行英语学习和数学学习的方法: 英语学习: 1. 利用智能辅助工具(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 2. 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,获得实时反馈和建议。 3. 使用自适应学习平台(如 Duolingo),获得量身定制的学习计划和个性化的学习内容及练习。 4. 利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 使用自适应学习系统(如 Khan Academy),获得个性化的数学学习路径和练习题。 2. 利用智能题库和作业辅助工具(如 Photomath),获取数学问题的解答和解题步骤。 3. 使用虚拟教学助手(如 Socratic),获得数学问题的解答、教学视频和答疑服务。 4. 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,进行数学建模和问题求解。
2025-02-05
langchain的提示词工程
LangChain 是一个在提示词工程领域具有重要地位的开源框架。 它允许开发者将语言模型与应用程序连接起来,使应用程序能够嵌入大模型的能力,俗称 ReAct,展示了一种提示词技术,允许模型“推理”和“行动”。 高级提示词工程技术的发展促使一系列工具和框架兴起,LangChain 已成为提示词工程工具包中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览等更广泛的功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。 在实际的工作场景中,LangChain 是常用的 RAG 框架之一。它是为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,便于开发者集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛模型,具备良好可扩展性,有活跃的贡献者和持续更新,提供全面文档和示例代码,考虑了应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-25
langchain开发手册
LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具助您轻松构建 RAG 应用。 组件包括: 1. 数据加载器(DocumentLoader):能从数据源加载数据并转为文档对象,文档包含 page_content(文本内容)和 metadata(元数据如标题、作者、日期等)。 2. 文本分割器(DocumentSplitter):将文档分割成多个小文档,方便后续检索和生成,因大模型输入窗口有限,短文本更易找相关信息。 3. 文本嵌入器(Embeddings):将文本转为高维向量的嵌入,用于衡量文本相似度以实现检索功能。 4. 向量存储器(VectorStore):存储和查询嵌入,常使用 Faiss 或 Annoy 等索引技术加速检索。 5. 检索器(Retriever):根据文本查询返回相关文档对象,常见实现是向量存储器检索器,利用向量存储器相似度搜索功能检索。 6. 聊天模型(ChatModel):基于大模型如 GPT3 实现文本生成,根据输入序列生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程: 1. 加载数据:根据数据源类型选择合适的数据加载器,如网页可用 WebBaseLoader。 2. 分割文档:根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 3. 转换和存储嵌入:选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:使用向量存储器检索器,传递向量存储器和文本嵌入器对象创建。 5. 创建聊天模型:根据性能和成本选择,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-23
langchain都包括什么
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下主要内容: 1. 核心概念:包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件或其他链。 2. 主要特点: 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并构建应用。 提示模板和值:支持创建和管理提示模板。 链:允许定义一系列处理步骤以完成复杂任务。 代理:支持构建代理,使其能使用语言模型做决策并调用工具。 支持多种用例,可与外部数据源交互并提供内存功能。 3. 应用开发组件: 数据加载器:从数据源加载数据并转换为文档对象。 文本分割器:将文档对象分割成多个较小对象。 文本嵌入器:将文本转换为嵌入,用于衡量文本相似度以实现检索。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。 检索器:根据文本查询返回相关文档对象。 聊天模型:基于大模型生成输出消息。 4. 构建 RAG 应用的一般流程:未具体提及。 以上内容由 AI 大模型生成,请仔细甄别。
2025-01-10
那个框架特别适用于RAG,比如LlamaIndex、LangChain等
LlamaIndex 是一个专为构建大型语言模型(LLM)应用而设计的开发框架,为开发人员提供了强大且灵活的工具,能更有效地理解和处理文本数据。对于熟悉 LangChain 的开发者而言,它并不陌生。 其核心优势在于对大型语言模型的深度支持,允许开发者利用如 GPT3.5 Turbo 等模型执行多种文本处理任务,如文档问答、文章生成和自动翻译等。特别地,它提供了构建文档问答系统的功能,能自动从大量文档中检索相关信息并生成答案,这在处理大量知识信息的领域极具价值。 LlamaIndex 还允许对嵌入模型进行微调以适应特定任务需求,提升文档问答系统的性能。它支持连接结构化、半结构化和非结构化等不同类型的数据源,为应用程序提供全面信息。 此外,其设计注重简化开发流程,即使复杂的 NLP 任务也能通过少量代码实现,无需深入了解底层复杂性。这种设计哲学不仅降低了开发大型语言模型应用的门槛,还极大提升了开发效率和应用性能。 LlamaIndex 的 GitHub 地址:https://github.com/runllama/llama_index/
2025-01-07
Langchain 是什么?
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它提供了一系列工具、组件和接口,使得创建由大型语言模型(LLM)和聊天模型支持的应用程序变得更加容易。其核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用,链则是组合的一系列组件(或其他链)以完成特定任务。 主要特点有: 1. 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 2. 提示模板和值:支持创建和管理提示模板。 3. 链:允许开发人员定义一系列处理步骤以完成复杂任务。 4. 代理:支持构建代理,能使用语言模型做决策并调用工具。 LangChain 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。它为开发人员提供强大工具集,以构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。 此外,LangChain 是一个为简化大模型应用开发而设计的开源框架,通过提供模块化工具和库,允许开发者轻松集成和操作多种大模型。它设计注重简化开发流程,支持广泛模型,具备良好可扩展性,有活跃贡献者和持续更新,提供全面文档和示例代码,考虑应用安全性和用户数据隐私保护,是多语言支持的灵活框架,适用于各种规模项目和不同背景开发者。LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-01-03
LangChain是什么
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和作用: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更轻松。 核心概念包括组件和链,组件是模块化的构建块,可组合创建强大应用程序,链是组合在一起完成特定任务的一系列组件(或其他链)。 主要特点包括: 模型抽象:提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用程序。 提示模板和值:支持创建和管理提示模板,引导语言模型生成特定输出。 链:允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 代理:支持构建代理,使用语言模型做决策并决定调用工具。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 为开发人员提供强大工具集,构建适应性强、高效且能处理复杂用例的高级语言模型应用程序。 LangChain 与 RAG(检索增强生成)的关系: LangChain 作为框架,提供实现 RAG 必需的工具和组件。 RAG 作为技术,可在 LangChain 框架内实施和利用。 LangChain 允许通过模块化组件构建 RAG 应用程序。 通过提供现成的链和提示模板,简化 RAG 应用程序开发过程。 利用 LangChain 实现 RAG 可创建更高效、准确的应用程序,尤其在需要大量外部信息辅助决策的场景。 通过丰富的 API 和组件库,支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。
2024-12-26
数字孪生的关键技术
数字孪生的关键技术包括以下方面: 利用定制软件实现工厂的数字孪生,如 Wistron 利用 Omniverse SDK 定制软件将 NVIDIA DGX 和 HGX 工厂实现数字孪生,大幅缩短调试周期。 运用生成式 AI 进行天气预测,如 CoreDev 可通过超高分辨率 AI 预测严重风暴。 构建端到端的机器人系统,让 AI 理解物理世界,需要 AI 计算机、监测分析计算机和执行任务的机器人三位一体。 提供模拟环境,如 Omniverse 提供模拟环境,教会机器人如何成为机器人。 实现软件定义的仓储、工厂,让机器人自主协同工作。 解决数字人构建中的工程关键点,如构建像人一样思考的 AI Agent、实现灵魂驱动躯壳、保证实时性、实现多元跨模态、处理拟人化场景等。
2025-01-02
智能体是什么?设计框架及关键技术是什么?如何从通用大模型搭建一款智能体
智能体是建立在大模型之上的具有特定功能的系统。 其特点包括: 1. 强大的学习能力:能通过大量数据学习,理解和处理语言、图像等多种信息。 2. 灵活性:适应不同任务和环境。 3. 泛化能力:将学到的知识泛化到新情境,解决未见过的类似问题。 智能体的应用领域广泛,如: 1. 自动驾驶:感知周围环境并做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理提供自动化客户支持。 6. 机器人:各类机器人中的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确需要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 从通用大模型搭建一款智能体,可参考以下流程: 本智能体的实现包含 3 个工作流和 6 个图像流,整体包含 171 个节点。采用单 Agent 管理多工作流策略,流程包括: 1. 信息聚合与数据挖掘:通过高度集成的数据采集机制,全面收集产品关键信息。 2. 卖点提炼与优化:运用先进的大模型分析信息,提炼具有市场竞争力和独特性的卖点。 3. 买点转化与策略应用:将卖点转化为消费者视角的买点,增强产品吸引力。 4. 视觉化信息呈现:设计直观且具有冲击力的卡片展示,确保信息传达的有效性和视觉吸引力。 5. 文案与脚本调整:根据目标受众偏好和媒体渠道,动态调整文案或脚本,实现内容的最佳适配。 6. 流程结果存储与分析:将处理结果系统化地存储到飞书,以供未来策略优化和决策支持。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-04