Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

O1和以前的有什么区别?

Answer

O1 与以前的模型相比,有以下区别:

  1. 在人类偏好测试中,文字生成方面人类更倾向于 4o 的回复,而在数据分析、编码和数学等大量推理类别中,O1-preview 的回复更受评测人员青睐。
  2. O1 的出色推理表现源自思维链(CoT)技术,且此次的思维链相比在 4o 上有很大改进,例如通过强化学习,O1 学会了磨练思维链并改进策略、识别和纠正错误、分解棘手步骤、尝试不同方法等。
  3. 作为早期模型,O1 还不具备使 ChatGPT 有用的一些功能,如浏览网页获取信息、上传文件和图像。但对于复杂推理任务是重大进步,代表了新的 AI 能力水平。
  4. 在一些竞赛和基准测试中表现出色,如在 2024 美国数学奥林匹克竞赛(AIME)资格赛中跻身美国前 500 名学生之列,在竞争性编程问题(Codeforces)中 o1-perview 拿到 62 个百分位,在物理、生物和化学问题的基准(GPQA)中 O1 与 O1-perview 都超过了人类博士水平的准确性。
Content generated by AI large model, please carefully verify (powered by aily)

References

OpenAI:我憋了个新大招儿,它叫o1-perview/mini

除此之外,OpenAI还对新模型做了人类偏好测试,请看下图:简单来说,这个测试结果表明:在文字生成方面,人类更加喜欢4o的回复,而不是o1-perview的回复。但在数据分析、编码和数学等需要大量推理的类别中,o1-preview的回复显然更加受到评测人员的青睐。那么,下一个问题就又出来了:这么出色的推理表现源自于什么神秘技术?当然是思维链(CoT)。但这次的思维链和之前在4o上的思维链可大有改进:“通过强化学习,o1学会了磨练其思维链并改进所使用的策略、学会了识别和纠正自己的错误、学会了将棘手的步骤分解成更简单的步骤、学会了在当前方法不起作用时尝试不同的方法。“学会的太多了......而且这个思维链也是足够复杂的!我大概的看了一下,这里有CoT嵌套、反思、有多项示例、似乎还有混合了决策树的逻辑在里边....对于这部分,碍于篇幅,我会单独开一篇内容和大家单独讨论。不过,想去尝鲜学习的朋友直接跳转传送门:https://openai.com/index/learning-to-reason-with-llms/好了,让我们继续。

OPENAI新模型9.12发布:OpenAI o1-WaytoAGI整理

As an early model,it doesn't yet have many of the features that make ChatGPT useful,like browsing the web for information and uploading files and images.For many common cases GPT-4o will be more capable in the near term.作为早期模型,它还不具备使ChatGPT有用的许多功能,例如浏览网页以获取信息以及上传文件和图像。对于许多常见情况,GPT-4o在短期内会更有能力。But for complex reasoning tasks this is a significant advancement and represents a new level of AI capability.Given this,we are resetting the counter back to 1 and naming this series OpenAI o1.但对于复杂的推理任务来说,这是一个重大进步,代表了AI能力的新水平。鉴于此,我们将计数器重置回1并将此系列命名为OpenAI o1。

OpenAI:我憋了个新大招儿,它叫o1-perview/mini

凌晨2点半写的这篇稿子,行了,也顾不上睡觉了,咱们就开门见山直接说吧!这回Sam可是真不放鸽子了。北京时间9月13号凌晨1点多,OpenAI宣布推出了模型o1-perview与o1-mini(真正的o1版本将在后续开放)。而拥有Plus版本的用户会陆续收到新模型权限,同时可以直接在Web客户端中进行尝鲜体验。OpenAI最近公布的模型发布计划中提到的"推理模型"已经成为业界热点。而这两个新模型正是该计划的具体实现。再加上从"草莓哥"的炒作到Sam Altman富有深意的暗喻,都让这个"推理模型"备受关注。虽然大家对它有所耳闻,但对其实际效果可能还不太清楚。为了直观地了解这个模型的真正能力,我们不妨看看下方的评估结果。左一:o1在2024美国数学奥林匹克竞赛(AIME)资格赛中跻身美国前500名学生之列。中间:o1在竞争性编程问题(Codeforces)中排名第89个百分位(这个版本的模型还没发布),而o1-perview拿到了62个百分位。最右:在物理、生物和化学问题的基准(GPQA)o1与o1-perview都超过了人类博士水平的准确性。

Others are asking
如何可以使用到chatgpto1大模型
目前 ChatGPT 没有 ChatGPT1 这个大模型。ChatGPT 有多个版本,如 ChatGPT3、ChatGPT3.5、ChatGPT4 等。您可以通过以下方式使用 ChatGPT 相关模型: 1. 访问 OpenAI 的官方网站,按照其指引进行注册和使用。 2. 部分应用和平台可能集成了 ChatGPT 的接口,您可以在这些应用中体验其功能。 需要注意的是,使用 ChatGPT 时应遵循相关的使用规则和法律法规。
2024-11-16
GPT O1强在哪里
GPT O1 的强大之处主要体现在以下几个方面: 1. 在推理方面,与 4o 相比具有显著优势,各项得分结果均超越 4o。 2. 在 GPQA diamond 这一困难的智力基准测试中,表现超越了拥有博士学位的专家,成为首个在该基准测试上达到此成就的模型。 3. 在物理、化学、生物、数学和编程等领域的挑战性任务上,表现出色,如同博士生一样优秀,甚至在 IMO 和 Codeforces 竞赛中取得高分。 4. 具有更聪明的思考方式,会花更多时间思考问题,尝试不同策略,甚至能意识到自身错误。 5. 在遵循指令方面能力较强,且在“后训练”阶段可能存在增强指令遵循能力的环节,极大增强了逻辑推理类的指令遵循数据比例,进一步加强了基座模型的逻辑推理能力。 虽然目前暂时缺少像 ChatGPT 那样的网络浏览和文件上传功能,但在复杂推理任务上已经非常强大。
2024-09-27
openAI新出的o1是什么
OpenAI 于北京时间 9 月 13 号凌晨 1 点多宣布推出模型 o1perview 与 o1mini(真正的 o1 版本将在后续开放),拥有 Plus 版本的用户会陆续收到新模型权限,并可在 Web 客户端中尝鲜体验。 在评估结果方面: o1 在 2024 美国数学奥林匹克竞赛(AIME)资格赛中跻身美国前 500 名学生之列。 o1 在竞争性编程问题(Codeforces)中排名第 89 个百分位(这个版本的模型还没发布),而 o1perview 拿到了 62 个百分位。 在物理、生物和化学问题的基准(GPQA),o1 与 o1perview 都超过了人类博士水平的准确性。 关于“超过人类博士水平”的测试,OpenAI 在新 page 中答复:“我们还在 GPQA diamond 上评估了 o1,这是一个困难的智力基准测试,用于测试化学、物理和生物学方面的专业知识。为了将模型与人类进行比较,我们招募了拥有博士学位的专家来回答 GPQAdiamond 的问题。我们发现 o1 的表现超越了这些人类专家,成为第一个在这个基准测试上做到这一点的模型。”但 OpenAI 也表示“这些结果并不意味着 o1 在所有方面都比博士更有能力——只是说明该模型在解决一些预期博士能够解决的问题上更加熟练。在其他几个机器学习基准测试上,o1 改进了最先进的水平。” 推理模型的准确率不断攀升,这意味着 AI 技术可以渗透到更多行业、更多高精尖业务中去。OpenAI 推出的新模型为整个行业注入了强心剂,带来了新的活力和希望。从 OpenAI 提出的通往 AGI(通用人工智能)的分级来看,我们正在从第一级向第二级迈进,未来可能会见证 AI 从单纯的生成工具向真正的智能体转变。此外,4o 模型和 o1 在推理方面差距较大,红色线代表 4o 的得分,绿色线代表 o1 的得分,o1 在各项得分结果上均优于 4o。
2024-09-18
微调和增量训练的区别
微调和增量训练是在人工智能领域中用于改进模型性能的两种不同方法,它们有以下区别: 微调: 参数调整范围:分为全量微调(FFT)和参数高效微调(PEFT)。全量微调对全量的模型参数进行全量训练,PEFT 则只对部分模型参数进行训练。 数据使用:在较小的、特定领域的数据集上继续大语言模型(LLM)的训练过程,通过调整模型本身的参数来提高在特定任务中的性能。 效果和优势: 能大幅提高模型在特定任务中的性能,因为可以输入更多示例。 提高模型效率,可通过专门化模型使用更小的模型,且由于只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和降低成本。 但经过微调的模型可能会失去一些通用性。 增量训练:文中未明确提及增量训练的相关内容。 总的来说,微调是一种针对特定任务和数据集对模型参数进行调整的有效方法,而增量训练的具体特点和与微调的详细对比在提供的内容中未充分阐述。
2025-01-07
我想知道你和Chat gpt的区别
以下是关于 ChatGPT 的相关介绍: 1. Gen AI/Generative AI 是“生成式人工智能”的正式称呼,能够生成新内容,如文本、图像、音乐等。AIGC 指的是由人工智能生成的内容的创作方式,是 Generative AI 的应用结果。 2. 从 OpenAI 的官网可知,2022 年宣发时称 ChatGPT 是一种模型,在官网的帮助页面中又称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务),它依赖 GPT 系列模型来运转。 3. ChatGPT 名称中的 GPT 为 Generative PreTraining Transformer,意为生成式、预训练、转换器。其本质是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑即模型需要训练,通过材料学习形成模型,训练目的是学习“提问和回答的通用规律”,实现举一反三。但它不是搜索引擎的升级版,存在可能混淆记忆、无法直接查看和更新所学、高度依赖学习材料、缺乏及时性和准确性等缺点。 4. ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发,是目前最先进的人工智能模型,是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。目前 ChatGPT 官网有两个版本,GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店和高级数据分析等插件。GPT4 有 PLUS 套餐(20 美金一个月)、团队版和企业版,一般推荐使用 PLUS 套餐。
2025-01-03
ai和agi的区别
AI(人工智能)和 AGI(通用人工智能)主要有以下区别: 1. 任务范围: AI 通常指的是弱人工智能(ANI),是针对特定任务或范围较小的任务来设计和训练的系统,例如智能音箱、网站搜索、自动驾驶等,只擅长执行提前定义好的任务,缺乏真正的理解和意识。 AGI 则是具有人类水平的智能和理解能力的系统,能够完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 2. 能力表现: 弱人工智能是高度专业化的,不具备像人类一样的认知能力,也无法超出为它设定的小范围领域来解决一般问题。 AGI 有能力在各种任务和环境中进行推理、学习、理解和适应。 3. 发展现状: 弱人工智能已经得到了巨大的发展,并在许多领域得到了广泛应用。 AGI 目前还只是一个理论概念,尚未有任何系统能达到这种通用智能水平。 图灵测试常被用于判断是否创造了真正的智能系统,若人类评审员在文本对话中无法区分真人和计算机系统,则该计算机系统被认为是“智能”的。
2024-12-30
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27
你和GPT4o、MJ、suno有什么区别呢
GPT4o 能快速返回答案,但可能存在错误且无法自动纠错。 o1 推理模型在给出最终结果前会反复推演和验证,耗时更长但结果更准确,o1 Pro 计算时间更长,推理能力更强,适合复杂问题。 MJ (Midjourney)是一款专注于生成图像的工具。 Suno 相关的特点未在提供的内容中有明确提及。 由于不清楚您提到的“Suno”的具体情况,无法给出更详细的对比。但总体来说,不同的工具在功能、性能、适用场景等方面存在差异。
2024-12-26
你和gpt4有什么区别
以下是关于我和 GPT4 的一些区别: 1. 在数学能力方面,GPT4 可能在比数学数据更多的代码上进行训练。相对于 ChatGPT,GPT4 在许多复杂数学问题中展示出更深入的理解,并能够应用适当的推理,而 ChatGPT 通常采用低级启发式方法,缺乏实际理解。 2. 在处理复杂约束及追问任务时,GPT4 不会像 GPT4o 那样首先主动询问用户的背景信息来判断提问意图。 3. 在局限性方面,GPT4 通常缺乏对 2021 年 9 月后发生事件的了解,不会从经验中学习,有时会犯简单推理错误,过于轻信用户虚假陈述,可能在预测中自信犯错且不注意复查工作。预训练模型高度校准,但后训练过程中校准度降低,其输出存在各种偏差。
2024-12-26