Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI分析数据表格并形成数据报告

Answer

目前知识库中没有关于 AI 分析数据表格并形成数据报告的具体内容。但一般来说,要让 AI 分析数据表格并形成数据报告,您可以考虑使用一些专门的数据处理和分析工具,例如 Python 中的 Pandas 库,它提供了丰富的函数和方法来读取、处理和分析表格数据。另外,一些商业智能软件如 Tableau、Power BI 等也具备强大的数据处理和报告生成功能。在使用 AI 进行数据处理时,您需要明确数据的格式、分析的目标以及期望的报告形式和内容,以便更有效地利用相关技术和工具来实现您的需求。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
我该如何学习AI
以下是关于学习 AI 的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词的技巧,它容易上手且很有用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出自己的作品,知识库中有很多实践后的作品和文章分享,欢迎您实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品互动是学习 AI 的有效方式。例如尝试使用 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,从而获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,有以下建议: 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(机器学习、深度学习等)以及在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响,培养思考和判断能力。 在医疗保健领域,为了让 AI 产生真正的改变,应投资创建一个模型生态系统,例如“专家”AI,让其像优秀的医生和药物开发者那样学习。成为顶尖人才通常从多年的密集信息输入开始,通过正规学校教育和学徒实践,从最出色的实践者那里学习。对于 AI 来说,应通过使用彼此堆叠的模型来训练,而不是仅依靠大量数据和生成模型。例如先训练生物学模型,再是化学模型,然后添加特定于医疗保健或药物设计的数据点。预医学生的课程从化学和生物学基础开始,设计新疗法的科学家也需要经历多年学习和实践指导,这种学习方式有助于培养处理细微差别决策的直觉。
2025-02-03
我想找一款合适的ai视频剪辑模型,请帮我推荐一下,并比较各自的优劣
以下为您推荐几款 AI 视频剪辑模型,并比较它们的优劣: 1. Pika: 优点:对奇幻感较强的画面把控出色,自然度高;更新的唇形同步功能集成到平台上便捷。 缺点:真实环境画面容易糊。 2. Pixverse: 优点:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好。 缺点:生成的视频存在帧率问题,处理人物时易有慢速播放的感觉。 3. Runway: 优点:在真实影像方面质感好,战争片全景镜头处理出色,控件体验感较好。 缺点:特别爱变色,光影不稳定。 4. MiniMax 海螺 AI: 优点:文生视频制作便捷高效,能提供多元创作思路。 缺点:较难保证主体/画面风格的稳定性,实际使用场景多为空镜头/非叙事性镜头/大场面特效镜头的制作。 在实际使用中,您可以根据不同工具对画面的处理能力进行组合使用。例如,需要奇幻感强、人物表情自然的画面可用 Pika 生成;物体滑行运动可用 Pixverse 生成;有手部特殊运动的画面可用 Runway 辅助完成。
2025-02-03
现在用AI变现
以下是一些常见的 AI 变现方式: 1. AI 抖音发广告:借助抖音平台对实体商家的流量扶持,为实体商家提供发广告的软件,每年有 100 多万的基础曝光量,商家购买价格为 3000 元、9000 元、10800 元。需求是懂软件开发的技术人员,熟悉抖音。 2. AI 私域做客户培育/用户旅程:通过 AI 软件帮助不同商家自动跟进/培育客户,需求是懂软件开发的技术人员,熟悉微信。 3. AI 绘本:为 2 4 岁儿童创作图文结合的睡前故事,以幼儿理解的方式表达。 4. 电商方面: 用 AI 制作服装,如 AI 小绿裙,单价 239 卖了 1160 多份,几个月共卖 27 万。可使用 sd、mj 等工具制作,新手可用 mewxai 或幻火。 用 AI 定制萌娃的头像,单价 19.9,卖了 2675 份,共 5 万。适合执行力强的人,也可将单子转给别人抽成。 5. 扣子“AI 应用”:解决低代码&零代码搭建复杂 AI 应用以及优化人与 AI 交互体验的问题。对于简单逻辑的应用搭建,整体体验可控。大家对 AI 应用呼声高是因为想变现,离用户和客户更近。但目前 AI 应用并非完全体,仍在快速迭代中。
2025-02-03
本人一般用ai语言模型来搜索所需的市场资料,现在想自学更多ai工具以便之后用ai工具发展副业,可以从哪里开始学习与实践
以下是关于您自学更多 AI 工具以发展副业的学习与实践建议: 1. 基础理解:了解大型语言模型的工作原理和局限性,例如它们在数学计算方面主要基于语言理解和生成,而非专门的数学计算设计,可能会在处理简单数学问题时出错。 2. 学习路径: 规划:明确学习目标和步骤。 记忆:记住关键知识和操作方法。 3. 实践操作: 掌握 GPT 的使用:了解 GPT 如 GPT4 的功能和特点,包括其工具选择和行动(Action)机制。 尝试工具:如 Webpilot,它能让 GPT 支持更实时的联网功能,获取网络资源。具体操作是在新建的 GPT 里勾掉 Web Browsing,然后点击添加 Actions(Add actions),再点击 import from URL 并填入相关网址。 4. 就业与应用: 了解人工智能领域的高薪工作,如数据科学家、机器学习工程师等,学习相关技能以增加就业机会。 关注 AI 技术在金融、医疗、制造业等行业的应用,掌握相关技能以拓展副业发展的可能性。 但需要注意的是,学习 AI 有可能赚钱,但不保证每个人都能成功,是否能赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素,需要持续学习和实践。
2025-02-03
做小红书如何用ai
以下是在小红书使用 AI 的一些方法和案例: AI 绘画变现: 1. 用 AI 制作服装:如 AI 小绿裙,单价 239 卖了 1160 多份。熟练者可用 sd 或 mj 制作,新手可用 mewxai 或幻火。 2. 用 AI 定制萌娃的头像:单价 19.9,卖了 2675 份。适合执行力强的人,也可将单子转给别人抽成。 3. 用 AI 做手机壁纸:6 块钱,卖了 463 张。速度快的一天可做几十套,需用美图秀秀或醒图的手机壁纸模版排版。 利用 AI 节约内容创作时间: 开发“小红书文案专家”Bot,其功能价值在于能根据输入的网页链接或视频链接生成小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,10 倍节约文字内容创作时间。设计思路是基于痛点,为自己和团队设计工作流,让 AI 按照运营工作思路和流程打工。一期产品功能包括提取链接中的标题和内容、按照小红书风格整理内容、加入 emoji 表情包、为文案配图片等。二期计划功能包括增加全网搜索热点功能、提炼热点新闻或事件关键信息、结合用户需求输出文案和配图。
2025-02-03
国内头部的AI产品有哪些
国内头部的 AI 产品包括以下这些: 在 APP 端:夸克和豆包的历史总下载量已过亿。单月新增方面,夸克、豆包和 Kimi 智能助手月增长可达到千万级。DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万。用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端:月总访问量超千万的产品包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,夸克、Notion 和百度文库的 MAU 超过千万。 在生成 Logo 方面的 AI 产品有: Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 Designhill:Logo 制作器使用 AI 技术创建个性化 Logo 设计。 LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入生成设计方案。 标小智:中文 AI Logo 设计工具,利用人工智能技术创建个性化 Logo。 此外,还有一些其他的 AI 产品,如 GPTs 用对话引导获取用户信息,Jasper 拆解场景流程按步骤收集信息,Leonardo 用画布和实时反馈加速 Prompt 提升,Novel 用交互式、渐进式续写,c.ai 卷生态卷模型,筑梦岛探索更多场景的对话玩法,FlowGPT 以 Prompt 的分享为核心,小悟空数据驱动优化 Prompt 等。这些产品致力于以更低的门槛帮助用户获得更高质量的 Prompt,从而更好地驱动模型。但当前阶段的 AI 产品还普遍体现出初级产品化、强行产品化的特征。
2025-02-03
我是一个AI小白,我使用AI的主要目的是使用这些工具,简化我工作中费时费力的事情,比如:表格的制作,筛选数据;图片的抠图,渲染,产品的口播介绍;日常工厂管理文件的编写及执行步骤;工作手册及岗位绩效的编写;作业指导书的编写
以下是为您整合的相关内容: 对于 AI 小白来说,使用 AI 工具简化工作中的费时费力之事是可行的。 在接触 AI 工具时,对于超出自己理解范围的事情,最简单有效的方法就是尝试。学习新事物,实践比听闻更重要。 比如在 AI 视频制作方面,人物设定与剧本是关键部分,包括主体、动作、场景等要素;分镜处理也较为重要,要考虑用几个镜头表述内容;生成环节如同抽卡,可多尝试,最后进行粗检和后期处理,如 AI 配音剪辑、加过渡滤镜等。小白制作 AI 视频要做好脚本即提示词,有耐心抽卡,并不断提升撰写提示词的能力。撰写提示词时要了解主体、动作、场景,避免使用专有名词和网络名词,给 AI 清晰描述。工具选用方面,没有绝对好的工具,只有适合的,如小白可使用剪映,主力机是 MacBook Pro 可使用 final cut。还可向 ChatGPT 询问获取灵感。 另外,在“AI 布道”活动中发现,AI 工具虽强大能做很多事,但也在其与普通人之间形成了一道墙。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。无论是什么身份、什么年龄段的人,都可以尝试使用 AI 工具。 如果您想要跟相关作者交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-01-30
我想通过dify调整一个客服系统,但是总是不能很好的把知识库里的数据回复完整?
使用 Dify 构建知识库的具体步骤如下: 1. 准备数据: 收集需要纳入知识库的文本数据,包括文档、表格等格式。 对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集: 在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。 为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式: Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。 根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用: 将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。 在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化: 收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。 定期更新知识库,增加新的内容以保持知识库的时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-01-29
用 ai 来分析数据,附件大小有限制吗
使用 AI 来分析数据时,附件大小通常是有限制的。 对于代码解释器(一种 GPT4 模式),您可以将文件上传到 AI,它可用于执行程序、运行数据分析等,但使用时需要充分了解统计数据和数据以检查其工作。 在 ChatGPT 助力的数据分析中,文中所提到的个性化分析示例使用的均是假数据。在实际业务中处理大量数据时,除了长类型字段有限制外,还需指定允许查询或解析的字段告诉 ChatGPT,结果数据要进一步校验是否符合要求,超长数据可以截取关键字段的内容丢给 GPT 总结分析。 需要注意的是,不同的 AI 工具和应用场景可能会有不同的附件大小限制和数据处理要求。
2025-01-28
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
AI数据透视工具推荐
以下为您推荐一些可用于数据透视的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 以下是一些设计工具的排行及相关数据: |排行|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|Canva Al|设计工具|55900|0.123| |2|Adobe Firefly|设计工具|928|0.047| |3|CF Spark|设计工具|885|0.023| |4|Microsoft Designer|设计工具|885|0.321| |5|What font is|设计工具|362|0.045| |6|稿定设计|设计工具|247|0.068| |7|墨刀 AI|设计工具|202|0.148| |8|Hotpot.ai|设计工具|198|0.244| |9|vectorizer.ai|设计工具|183|0.042| |10|Wepik by freepik|设计工具|164|0.304| |排行|产品名|分类|4 月访问量(万 Visit)|相对 3 月变化| |||||| |1|Canva Al|设计工具|58640|0.033| |2|CF Spark|设计工具|940|0.118| |3|Adobe Firefly|设计工具|835|0.051| |4|Microsoft Designer|设计工具|612|0.179| |5|What font is|设计工具|348|0.006| |6|Wepik by freepik|设计工具|284|0.295| |7|Hotpot.ai|设计工具|283|0.024| |8|稿定设计|设计工具|264|0.078| |9|Designs AI|设计工具|185|0.167| |10|墨刀 AI|设计工具|179|0.016|
2025-01-26
如何用最简单的方法,训练一个自有数据的大模型
训练自有数据的大模型可以通过以下步骤实现: 1. 了解大模型的概念:大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。可以用上学参加工作来类比大模型的训练、使用过程,包括找学校(需要大量 GPU 等计算资源)、确定教材(需要大量数据)、找老师(选择合适算法)、就业指导(进行微调)、搬砖(推导)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会对输入进行分词并形成词汇表。 2. 基础训练步骤: 进入厚德云模型训练数据集,如 https://portal.houdeyun.cn/sd/dataset 。 创建数据集:在数据集一栏中,点击右上角创建数据集,输入数据集名称。可以上传包含图片+标签的 zip 文件,也可单独上传照片,但建议提前打包。Zip 文件里图片名称与标签文件应当匹配,上传后等待一段时间确认创建,返回上一个页面等待上传成功并可点击详情检查,能预览数据集的图片及对应的标签。 Lora 训练:点击 Flux,基础模型会默认是 FLUX 1.0D 版本。选择数据集,触发词可有可无,模型效果预览提示词随机抽取数据集里的标签填入。训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数,可默认 20 重复次数和 10 轮训练轮数,按需求选择是否加速,点击开始训练,会显示所需消耗的算力,等待训练完成,会显示每一轮的预览图,鼠标悬浮到想要的轮次模型,中间会有生图,点击可自动跳转到使用此 lora 生图的界面,点击下方下载按钮可自动下载到本地。 3. 部署和训练自己的 AI 开源模型的主要步骤: 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署,根据自身资源、安全和性能需求选择。 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 选择合适的预训练模型作为基础,如开源的预训练模型 BERT、GPT 等,也可自行训练基础模型。 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,训练自有数据的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-01-24
Excel表格办公AI工具
以下是一些关于 Excel 表格办公的 AI 工具: 1. Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出,整合了多种办公软件,用户通过聊天告知需求,Copilot 自动完成任务,包括 Excel 中的数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。 另外,在软件架构设计中,以下是一些可以绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,可拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 6. draw.io(diagrams.net):免费在线图表软件,支持多种视图创建。 7. PlantUML:文本到 UML 转换工具,通过描述文本自动生成视图。 8. Gliffy:基于云的绘图工具,提供多种架构图创建功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。
2025-02-01
有没有好用的ai表格推荐
以下为一些好用的 AI 表格工具推荐: 6 月访问量排名: 1. Highcharts:表格工具,6 月访问量 235 万,相对 5 月变化 0.389。 2. Fillout.com:表格工具,6 月访问量 186 万,相对 5 月变化 0.147。 3. Coefficient:表格工具,6 月访问量 46 万,相对 5 月变化 0.251。 4. Numerous.ai:表格工具,6 月访问量 41 万,相对 5 月变化 0.087。 5. SheetGod:表格工具,6 月访问量 31 万,相对 5 月变化 0.033。 6. GPTExcel:表格工具,6 月访问量 25 万,相对 5 月变化 0.364。 7. 酷表 ChatExcel:表格工具,6 月访问量 18 万,相对 5 月变化 0.159。 8. GPT Workspace:表格工具,6 月访问量 17 万,相对 5 月变化 0.213。 9. OpenAI in Spreadsheet:表格工具,6 月访问量 12 万,相对 5 月变化 0.314。 10. Ajelix AI Excel Tools:表格工具,6 月访问量 10 万,相对 5 月变化 0.145。 4 月访问量排名: 1. :表格工具,4 月访问量 175 万,相对 3 月变化 0.036。 2. Highcharts:表格工具,4 月访问量 127 万,相对 3 月变化 0.257。 3. Numerous.ai:表格工具,4 月访问量 73.4 万,相对 3 月变化 0.911。 4. Coefficient:表格工具,4 月访问量 69 万,相对 3 月变化 0.213。 5. GPTExcel:表格工具,4 月访问量 37 万,相对 3 月变化 1.139。 6. Rows AI:表格工具,4 月访问量 34 万,相对 3 月变化 0.115。 7. SheetGod:表格工具,4 月访问量 26 万,相对 3 月变化 0.016。 8. AI Excel Bot:表格工具,4 月访问量 25.3 万,相对 3 月变化 0.103。 9. OpenAI in Spreadsheet:表格工具,4 月访问量 17 万,相对 3 月变化 0.091。 10. GPT Workspace:表格工具,4 月访问量 17 万,相对 3 月变化 0.189。 关于 Excel 的 AI 功能,目前有以下几种工具和插件可以增强 Excel 的数据处理和分析能力: Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求,Copilot 自动完成任务。 Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,可生成公式、相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-29
Dify如何调用飞书智能表格
Dify 调用飞书智能表格的方法如下: 1. 部署完成后,可以通过以下方式使用飞书·稍后读助手: 得益于飞书 app 的多平台支持,在电脑、手机端通过飞书机器人与稍后读助手进行对话。 直接在 Coze 商店中与 bot 进行对话。 如果还选择了部署到微信服务号、订阅号,也可以通过这些渠道调用 bot。 2. 设置稍后读存储地址: 首次使用,按以下步骤操作: 访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 另外,还可以发送“查询存储位置”、“修改存储位置”,来更换飞书多维表格链接,调整稍后读存储位置。 3. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接。如果是第一次使用,会要求授权共享数据。授权通过后,再次输入需要收藏的页面链接,即可完成收藏。 目前部分页面链接可能会小概率保存失败,暂未定位原因。 4. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 此外,关于 Dify 在微信上的调用,可参考以下信息: GitHub: https://github.com/zhayujie/chatgptonwechat Gitee: https://gitee.com/zhayujie/chatgptonwechat 这里先暂时不过多介绍 Dify,它跟 AutoGPT、MetaGPT、FastGPT 等都是可以自己构建 Agent、工作流的 LLM 应用开发平台。AM 就是搭建在 Dify 上面的。 说回 LlamaEdge,可以自建一个 API 扩展来实现调用上面的 FLUX.1 API Server(套娃)。 API 扩展说明,可以查看:https://docs.dify.ai/zhhans/guides/extension/apibasedextension,但貌似 0.8.3 的版本不再使用了(dify 里面有不少功能更新缺陷或版本冲突,所以使用时需要自行修改或提交 PR)。 也可以引入项目,在 bot/dify/新建一个 dify_image.py 的程序,将画图程序的调用过程写到 dify bot 中,如用 query“画”开头接提示来触发调用。dify_image.py 后续会更新到代码仓库中。 图片服务器,很简单,分别写一个 Flask app 程序和一个 html: app.py template/index.html 以上代码都可以由 Phind、Copilot、Cursor、Zed + ollama + 一个代码大模型代劳,但架构感觉整复杂了不够优雅,后面整理好打包一个解决方案再提交一个 repo。
2025-01-24
我给你一个excel表格,你可以快速生成甘特图吗?
目前我无法直接为您提供将 Excel 表格快速生成甘特图的服务。但您可以使用一些专业的软件,如 Microsoft Project、Excel 本身(通过特定的功能和插件)、Trello 等,它们都具备将相关数据转化为甘特图的功能。您可以根据自己的需求和使用习惯选择合适的工具,并按照其操作指南进行操作。
2025-01-24
能帮我写一份deepseek的洞察分析报告吗
以下是关于 DeepSeek 的洞察分析报告: 一、用户体验 用户 May 第一次使用 DeepSeek 后,有以下感受: 1. 深度思考过程展示:将如何写白皮书的思考过程全程展示,与习惯的 ChatGPT 黑盒子模式不同,这种坦白的方式体验良好。 2. 回答的白皮内容和排版: 有引用链接:答案的每一句话都标注了引用的网站,方便用户判断出处的严谨性。 有参考文献:直接在文末列出参考的白皮书,为用户查找相关资料提供便利。 回答内容质量:质量不错,没有明显的 AI 痕迹。 二、华尔街分析师的反应 DeepSeek 展示出媲美领先 AI 产品性能的模型,成本仅为一小部分,并在全球主要市场的 App Store 登顶。但也有不同观点,Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 三、实际使用表现 1. 文字能力:在中文场景中高度符合日常和写作习惯,但在专业论文总结方面稍弱。 2. 数学能力:经过优化,表现不错。 3. 编程能力:略逊于 GPT,据用户反馈。 4. 技术创新:采用 GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 四、相关动态 复旦大学 OpenMOSS 发布实时语音交互模型。
2025-02-01
查看deepseek v3 技术报告
以下是关于 DeepSeek V3 的相关信息: Andrej Kaparthy 赞扬 Deepseek 的技术报告值得一读。 很多中国人将 DeepSeekV3 视作“国货之光”,它对高性能算力的依赖小,将训练和推理当作一个系统,给出诸多新的技术思路,注重用工程思维高效解决算法和技术问题。 DeepSeek 的创始人梁文锋出生于 1980 年代,来自广东省的一个五线城市,毕业于浙江大学,主修软件工程,本硕,人工智能方向,非常低调。 阅读 DeepSeek V3 的技术报告列出的研发人员名单近 200 人,均为本土 CS,很多核心是清北及大学应届的 CS 硕博,即便核心人员也是毕业 3 5 年 CS 博士,研发人员充分信任不断自我选择,这是中国最像 OpenAI 研发组织分工和氛围的 AI 研究机构。 您可以通过以下链接获取相关技术报告:
2025-01-31
你这里有AI报告的合集吗
以下是为您提供的部分 AI 报告合集: 2024 年 5 月 9 日: 《》 《》 《》 《》 《》 2023 年 11 月 15 日: 《》 《》 《》 2024 年 12 月 23 日: 《 Fastdata 极数:《》 《》 清华大学五道口金融学院:《》 国盛证券:《》 托尼·布莱尔全球变化研究所:《》 腾讯云:《》 您可以在以下链接查看更多详细内容:
2025-01-22
我需要一个能帮助写年终报告的AI
以下是一些关于利用 AI 帮助写年终报告的信息: 在金融服务业中,生成式 AI 能够帮助金融服务团队改进内部流程,简化财务团队的日常工作。它可以从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,在预测方面,能帮助编写公式和查询,发现模式并为预测建议输入;在报告方面,能自动创建文本、图表等内容,并根据不同示例调整报告。此外,在会计和税务、采购和应付账款方面也能提供帮助,如综合总结税法和潜在扣除项,自动生成和调整合同等。 安迪分享了一个实战案例,通过将过去写的文章发给 AI 总结写作特点,编写提示词来克隆自己的写作风格,从而让 AI 代替自己写“手写信”,大大提高了效率。 对于个人博客,在接触 AI 之前输出困难,而 AI 提供了不同的思路和视角,让写作变得可执行可操作。当 AI 能在几分钟内生成详细报告时,能节省大量时间和精力。但在与 AI 合作中也会面临一些问题,如如何掌控 AI 使其成为得力助手,如何应对超出理解范围的解决方案等。
2025-01-22
AI可行性评估报告
以下是为您提供的关于 AI 可行性评估报告的相关内容: 一、关于 AI 责任和新技术的提案 1. 该提案建立在 4 年的分析和利益相关者(包括学者、企业、消费者协会、成员国和公民)的密切参与基础上。 2. 准备工作始于 2018 年,成立了责任和新技术专家组。专家组于 2019 年 11 月发布报告,评估了 AI 的某些特征对国家民事责任规则构成的挑战。 3. 专家组报告的输入得到了三项额外外部研究的补充: 基于欧洲侵权法对关键 AI 相关问题的比较法律研究。 关于责任制度有针对性调整对消费者决策(特别是他们对采用 AI 支持的产品和服务的信任和意愿)影响的行为经济学研究。 涵盖一系列问题的经济研究,包括 AI 应用的受害者与非 AI 设备的受害者在试图获得损失赔偿时面临的挑战;企业对当前责任规则在其涉及 AI 的业务中的应用是否不确定以及不确定程度;法律不确定性的影响是否会阻碍对 AI 的投资;国家责任法的进一步碎片化是否会降低 AI 应用和服务的内部市场的有效性,以及通过欧盟立法协调国家民事责任的某些方面是否会减少这些问题并促进欧盟公司对 AI 技术的总体采用。 二、AI 相关的其他内容 1. 让 Claude 3.5 摆脱循环的提示技巧:在模型陷入重复或逻辑僵局时,可使用“退后一步”提示词,让其先进行多步、多角度思考,输出十段左右分析,再转化为代码实现。优势是避免错误方向的持续生成,促使模型输出新的思考过程。但如果模型输出内容已过于冗杂,建议修改原始提示词。 2. AI 对程序员工作的影响分析:AI 可代替代码生成、补全、分析问题和数据提取、辅助架构设计文档等部分;无法代替需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。专业程序员可通过 AI 提升效率,但非专业人士难以依赖 AI 完成复杂任务,需注重自身技能提升和架构设计能力。 3. AI 应用场景:可从“自相矛盾”“时间线”“常识性冲突”角度,分析访谈内容的内部一致性,并结合常识推测可能存在夸大或不实之处。适合验证新闻、访谈或声明的真实性,发现潜在问题。 三、关于 AI 的创新方法 1. 政府已通过发布相关内容支持工具的开发。 2. 提出关于非监管工具对组织嵌入可信 AI 的帮助。 3. 包括长期规划,如交付确保框架有效的核心功能的首次迭代、与关键监管机构合作、发布草案咨询、开发监管沙盒或试验台、发布监测和评估报告、更新 AI 监管路线图等。
2025-01-22
我想用AI软件生产年终总结报告,请问用哪种软件合适
以下是一些适合用于生成年终总结报告的 AI 软件及相关资源: 1. Claude Artifacts:文章《年底了,惊艳一次,用 Claude Artifacts 生成年终总结,简洁明快还能无限复用》介绍了其生成年终总结的特点,如简洁明快、可无限复用。通过编辑和实时预览功能,能一次性创建模板并不断修改使用,且改进后产出更稳定,简化创作过程。 2. 您还可以参考以下报告和文章获取更多信息: 《》 《》 《》 《》 生成式 AI 季度数据报告 2024 月 1 3 月 《》 《》
2025-01-20