Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你使用的是哪家基础大模型?

Answer

目前常见的基础大模型包括:

  • Fooocus 程序默认用到了 3 个 SDXL 的模型,分别是一个 base,一个 Refiner,和一个 LoRA。其大模型(base 和 Refiner)默认放在:Fooocus_win64_1-1-10\Fooocus\models\checkpoints;LoRA 模型默认放在:Fooocus_win64_1-1-10\Fooocus\models\loras。如果单独安装,需要下载三个模型:SDXL 基础模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors;refiner 模型:https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors;LoRA 模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_offset_example-lora_1.0.safetensors。如果部署了 SD 秋叶包,也可以共用模型(大模型和 LoRA),可在 Fooocus_win64_1-1-10\Fooocus\modules\path.py 中修改路径为秋叶包模型对应的路径。配置好后点击 run.bat 文件启动。
  • 在大型语言模型方面,主要有以下几家:OpenAI 制作了 GPT-3.5 和 GPT-4,它们驱动了 ChatGPT 和微软的 Bing(在 Edge 浏览器上访问);Google 在 Bard 的标签品牌下有各种模型;Anthropic 制造了 Claude 和 Claude 2。
  • 每个微调工作都从一个默认为 curie 的基本模型开始,模型可以是 ada、babbage、curie 或 davinci。您可以使用 OpenAI CLI 开始微调工作,具体操作及相关注意事项如上述说明。
Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】SD的大哥Fooocus重磅问世,三步成图傻瓜式操作

大模型(base和Refiner)默认放在这里:\Fooocus_win64_1-1-10\Fooocus\models\checkpointsLoRA模型默认放在这里:\Fooocus_win64_1-1-10\Fooocus\models\lorasFooocus程序默认用到了3个SDXL的模型,一个base,一个Refiner,和一个LoRA。如果单独安装,这里需要下载三个模型:SDXL基础模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensorsrefiner模型:https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensorsLoRA模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_offset_example-lora_1.0.safetensors如果你部署了SD秋叶包,也可以共用模型(大模型和LoRA),可以这里找到path.py文件:Fooocus_win64_1-1-10\Fooocus\modules\path.py,用text记事本打开,修改路径为秋叶包模型对应的路径:大模型路径,比如:sd-webui\models\Stable-diffusion\SDXLLoRA模型路径:比如sd-webui\models\lora都配置好之后,点击run.bat文件启动。

如何使用 AI 来做事:一份带有观点的指南

当我们现在谈论人工智能时,我们通常谈论的是大型语言模型或简称为LLMs。大多数AI应用程序都由LLM驱动,其中只有几个基础模型,由少数几个组织创建。每家公司都通过聊天机器人直接访问他们的模型:OpenAI制作了GPT-3.5和GPT-4,它们驱动了[ChatGPT](https://chat.openai.com/)和微软的[Bing](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx&sydconv=1)(在Edge浏览器上访问)。Google在[Bard](https://bard.google.com/)的标签品牌下有各种模型。Anthropic制造了Claude和[Claude 2](https://claude.ai/)。还有其他我不会讨论的LLMs。第一个是[Pi](https://pi.ai/talk),一个由Inflection构建的聊天机器人。Pi针对对话进行了优化,真的、真的想成为你的朋友(真的,试试看我在说什么)。它不喜欢做除了聊天之外的任何事情,尝试让它为你工作是一种令人沮丧的事情。我们也不会涵盖任何人都可以使用和修改的各种开源模型。它们通常对今天的普通用户来说不是很容易使用或有用,但是有真正的希望。未来的指南可能会包括它们。因此,这是一份快速参考图表,总结了LLM的现状:

微调(Fine-tuning)

以下假设您已经按照上述说明准备了训练数据。使用OpenAI CLI开始微调工作:您从哪里BASE_MODEL开始的基本模型的名称(ada、babbage、curie或davinci)。您可以使用后缀参数自定义微调模型的名称。运行上面的命令会做几件事:1.使用文件API上传文件(或使用已经上传的文件)2.创建微调作业3.流式传输事件直到作业完成(这通常需要几分钟,但如果队列中有很多作业或您的数据集很大,则可能需要数小时)每个微调工作都从一个默认为curie的基本模型开始。模型的选择会影响模型的性能和运行微调模型的成本。您的模型可以是以下之一:ada、babbage、curie或davinci。请访问我们的定价页面,了解有关微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成。在我们的系统中,您的工作可能排在其他工作之后,训练我们的模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。如果事件流因任何原因中断,您可以通过运行以下命令恢复它:工作完成后,它应该显示微调模型的名称。除了创建微调作业外,您还可以列出现有作业、检索作业状态或取消作业。

Others are asking
你好,请问,哪家的智能体最适合处理excel表格
目前有以下几种智能体适合处理 Excel 表格: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,能通过聊天形式让用户告知需求,自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-02
AI 数字人哪家的好
以下为您介绍一些较好的 AI 数字人相关的资源和产品: 1. 数字人躯壳构建: 可以使用 web 前端页面(Live2D 就提供了 web 端的 SDK)或者 Native 的可执行程序进行部署。笔者的开源数字人项目(项目地址:https://github.com/wanh/awesomedigitalhumanlive2d)选择了 live2d 作为数字人躯壳,因为这类 SDK 的驱动方式相比现在的 AI 生成式的方式更加可控和自然,相比虚幻引擎这些驱动方式又更加轻量和简单。另外超写实的数字人风格在目前的技术能力下,处理不好一致性问题,容易带来虚假的感觉或者产生恐怖谷效应,而卡通二次元的形象给人的接受度更高。关于 live2d 的 SDK 驱动方式可以参考官方示例:https://github.com/Live2D。 2. 数字人课程: 强烈推荐卡尔的 AI 沃茨做的这门数字人课程,一共 15 节视频课,持续更新还会不定时增加最新的数字人内容,附赠课外社群辅导,专门解决数字人相关的问题。关于卡尔,从创建 AIGC 开源学习网站 learnpromptl.pro,到建立卡尔的 AI 沃茨万人社群,他一直致力于 AI 学习圈。这一次,他建立了一套完整的数字人学习体系,放在这门《克隆你自己》的课程中,带领大家全方位掌握数字人各技能。同时,他详细回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯超 331.9k 播放、霉霉说中文火遍全网、AI 郭德纲讲英文相声、硅语翻译|海外明星送出中文新年祝福、通义千问|兵马俑跳科目三、小冰推出支持交互的多模态数字人、阿根廷新总统用 HeyGen 做演讲等。数字人的出现,可以极大程度上优化工作流,尤其在制作个人 ip 短视频、配音、直播甚至到智能客服、虚拟偶像等各种领域都可以完成赋能。如果您想加入这场数字人浪潮,拥有自己的数字分身,优化自己的工作流,这门具备完整数字人学习体系的课程,正是您的需求。(扫码可以查看课程详细内容和介绍) 3. 算法驱动的数字人相关开源代码: ASR 语音识别:openai 的 whisper:https://github.com/openai/whisper ;wenet:https://github.com/wenete2e/wenet ;speech_recognition:https://github.com/Uberi/speech_recognition 。 AI Agent:大模型部分包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等等。Agent 部分可以使用 LangChain 的模块去做自定义,里面基本包含了 Agent 实现的几个组件 。 TTS:微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费;VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声;sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 当然这种简单的构建方式还存在很多的问题,例如:如何生成指定人物的声音?TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作?数字人如何使用知识库,做出某个领域的专业性回答?
2024-12-23
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前在创建这种智能体方面,一些常见的 AI 产品如 GPT4、Gemini 等都可以考虑。然而,要确保回答 100%正确且不会瞎说是具有一定难度的,因为 AI 的回答仍然受到数据和算法的限制。 3. 以下是一些额外的建议: 参考沃顿商学院给教师和学生的提示词库,例如其中的结构化题型设计师和测验生成器的相关提示。 像导演一样,将创建智能体的任务拆解成科学合理的步骤,明确每个步骤的目标和结果。 注意提示语的逻辑,将复杂任务拆分成多个相互关联的步骤,使前一步的结果成为后一步的基础。 很多 AI 网站都支持创建智能体,您可以根据配置信息、知识库和能力配置等来自行定制。
2024-11-21
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
你的知识库更新到什么时候,用的是哪家的大模型
以下是关于大模型的相关知识: 大模型与小模型的区别:小模型在特定任务上表现出色,但只能用于特定任务;大模型像多功能基础平台,能处理多种任务,应用范围广泛且拥有更多通识知识。 大模型的知识范围:大模型并不拥有无限知识,其知识来源于训练过程中接触的数据,这些数据有限,且训练后知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大模型的运作机制:主要通过大量数据训练学习语言结构和模式,根据输入生成相应文本,类似于词语接龙游戏。 常见的大模型:包括 OpenAI 的 3.5 和 4 版本,微软 Bing 使用 4 和 3.5 的混合,谷歌的 Bard 由 PaLM 2 等基础模型驱动,Anthropic 的 Claude 2 具有非常大的上下文窗口,且不太可能恶意行事。 关于知识库的更新时间和使用的具体大模型,上述内容未明确提及。
2024-11-07
什么是大模型一体机
大模型一体机是一个相对复杂的概念。通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其本质是两个文件:一个是参数文件,类似于问答机器人的“大脑镜像”,负责处理和生成文本信息;另一个是包含运行这些参数的代码文件。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 大模型的特点包括: 1. 预训练数据非常大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数非常多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。 在架构方面,大模型有 encoderonly、encoderdecoder、decoderonly 等类型。目前常见的 AI 助手多采用 decoderonly 架构。
2025-02-18
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大模型产品对比
以下是对一些大模型产品的对比介绍: 智谱清言:由智谱 AI 和清华大学推出,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。更擅长专业能力,但代码能力有优化空间,知识百科稍显不足,是很有竞争力的大模型。 适合应用:场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景,在较复杂推理应用上效果不错,也适用于广告文案、文学写作。 其他大模型产品: OpenAI 发布 GPT4 科大讯飞发布星火 1.0 及升级至星火 3.0 百度发布文心一言 1.0 及升级至 V3.5 清华开源 ChatGLM 360 发布 360 智脑 1.0 及升级至智脑 4.0 复旦开源 MOSS 元语开源 ChatYuan 阿里云发布通义千问 1.0 及开源 Qwen7B 商汤科技发布商量 1.0 及升级至商量 2.0、商量 3.0 昆仑万维发布天工 1.0 出门问问发布序列猴子 华为发布盘古 3.0 西湖心辰发布西湖大模型 云从科技发布从容大模型 理想汽车发布 MindGPT OPPO 发布 AndesGPT vivo 发布 BlueLM 小米发布大模型 MiLM 元象科技开源 XVERSE13B Google 发布多模态大模型 Gemini 上海人工智能实验室开源 InternLM20B 百川智能发布 Baichuan2—Turbo 关于大模型在营销方面的应用: 大模型在实体类产品的营销标语生成上表现较好,虚拟类产品相对欠佳。可能是因为大模型训练数据中实体类语料多,更能调用已有知识加工,而虚拟类产品非标准品,大模型认识不足。 情绪价值在营销领域有很多用武之地,除快消商品外,很多产品的营销需要反复沟通,虚拟产品对感性成交依赖更大,大模型在这方面仍有很大发展空间。
2025-02-18
怎么零基础学习agi
以下是零基础学习 AGI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有一些个人的学习心得供您参考: YoYo 作为文科生,在学习 AGI 之前不懂代码和英语,注册尝试各种 AI 工具走了不少弯路。学习后能够搓多 Agent 的智能体,进行营销文案 demo、SQL 代码进阶学习应用,创建了多个智能体,并在公司中实践智能客服从创建到应用的过程。其学习路径的关键词为:少就是多先有个初识目录索引推荐兴趣最重要先动手,强调学以致用,通过学习分享不断填补知识的缝隙来成长。 另外,银海在 0 基础跨界 AI 编程共学中,进行了关于图像流和图片生成分享流构建完整工作流的尝试,包括通过定时任务、从图片站点获取或按关键词搜索来更新图片和推广语,以商品图为基础创建梗句内容,在新建的 VQ AGI 团队空间进行图像流工作以及将抠图后的元素与海报合成等操作。
2025-02-18
零基础学习ai先学习哪一步
对于零基础学习 AI,您可以按照以下步骤进行: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是零基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-02-18
零基础,如何开始学搭建
对于零基础学习搭建,以下是一些建议和相关资源: 从网站搭建方面,您可以参考以下直播内容: 大雨将介绍软件安装情况并分享零基础搭建可修改网站的目标。在直播中,大雨会先介绍需要下载的东西并去转发,还会询问观众编程基础、学习目标等。当天目标是搭建网站并修改,目的是降低编程难度。 大雨介绍了自己的职业背景,包括曾在央企做架构师、外企做咨询顾问、互联网公司产品经理,现在运营公众号。他提到去年开始认识一些人,上个月在切磋大会后开始做 AI 编程相关的事,表示做编程不是为成为程序员,而是提高日常工作学习效率,还提及后续的共学安排。 共学搭建网站部分,主要围绕搭建自己网站所需的账号注册展开,包括 GitHub 与 Radio 账号注册流程。 关于 Stable Diffusion 方面,您可以在知乎上查看以下教程: 深入浅出完整解析 Stable Diffusion(SD)核心基础知识,涵盖系列资源、核心基础原理、核心网络结构解析、搭建使用推理流程、经典应用场景、训练自己的 AI 绘画模型等多个方面。 如果您想搭建 AI 微信聊天机器人,可以参考以下内容: 纯 GPT 大模型能力的微信聊天机器人搭建,重点是修改 dockercompose.yml 文件中的具体配置来串联微信号和已创建好的 AI 机器人。配置时需留意相关参数,如私聊或群聊的触发前缀、群组自动回复的配置等。
2025-02-16
配置“DeepSeek-R1”模型的 API key:基础 URL 为 https://ark.cn-beijing.volces.com/api/v3,填好之后点击保存,关掉提醒弹窗。请对于这一步进行细节说明
以下是配置“DeepSeekR1”模型的 API key 的详细步骤: 1. 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台)。 2. 创建一个接入点:点击在线推理创建推理接入点。 3. 为接入点命名为“DeepSeekR1”。如果出现“该模型未开通,开通后可创建推理接入点”的提示,点击“立即开通”,勾选全部模型和协议,一路点击开通(免费)。如果无提示则直接到第 5 步,点击确认接入。 4. 确认以下无误后,点击“确认接入”按钮。 5. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”,复制这个推理点的 ID 放到微信里保存。 6. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。如果已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】,复制好之后,放到微信里保存。 7. 也可以使用其他插件,下面为举例示意使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 8. 打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 9. 基础 URL 填写:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 10. 配置完成。
2025-02-15
如何零基础入门
以下是零基础入门 AI 的一些建议: 1. 学习 Cursor: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱如 google/github/163/qq 邮箱,接受二维码登录。 安装中文包插件。 参考相关文章: 在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求。 2. 成为 AI 提示词工程师: 岗位技能要求包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 零基础小白学习建议:找网上的基础课程,看科普类教程,阅读 OpenAI 的文档以理解参数作用。 推荐练手的 Prompt 工具和相关教程文档。 3. 学习 Stable Diffusion: 可参考 Nenly 发布的零基础入门课及配套学习文档。 了解安装攻略,包括如何安装、启动软件。 下载课程内提及的模型文件、扩展插件及所需素材。
2025-02-14
零基础如何学习AGI
对于零基础学习 AGI,以下是一些建议和相关学习资源: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始,麦橘分享的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始,梦飞分享的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始,银海分享的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始,南墙分享的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。 3. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-13
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
deepseek使用小技巧
以下是关于 DeepSeek 使用的一些小技巧: 1. 高阶能力调用: 文风转换矩阵:包括作家风格移植(如“用鲁迅杂文风格写职场 PUA 现象”)、文体杂交(如“将产品说明书改写成《史记》列传格式”)、学术口语化(如“把这篇论文摘要翻译成菜市场大妈能听懂的话”)。 领域穿透技术。 2. 场景化实战策略:包括商业决策支持、创意内容生成、技术方案论证。 3. 效能增强技巧: 对话记忆管理:如上下文锚定(“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(“请复述之前确认的三个设计原则”)、焦点重置(“回到最初讨论的供应链问题”)。 输出质量控制:针对不同问题类型进行修正,如过度抽象(“请具体说明第三步操作中的温度控制参数”)、信息过载(“用电梯演讲格式重新组织结论”)、风格偏移(“回归商务报告语气,删除比喻修辞”)。 4. 特殊场景解决方案: 长文本创作:如分段接力法(“先完成故事大纲→逐章扩展→最后进行伏笔校验”)、逻辑粘合剂(“确保新章节与前文的三处细节呼应”)。 敏感内容处理:如概念脱敏法(“用经济学原理类比说明网络审查机制”)、场景移植法(“假设在火星殖民地讨论该议题”)。 5. 通用于任何大模型的提示词针对性技巧: 身份定位技巧:目的是让 AI 理解您的背景和专业水平,例如“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 场景描述技巧:提供具体的应用场景和限制条件,例如“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 结构化输出技巧:指定具体的输出格式和内容结构,例如“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 分步骤提问技巧:将复杂问题拆解为可管理的小任务,例如“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 反馈优化技巧:通过追问获得更精准的答案。 深度思考引导技巧:获得更深入的分析和见解。 6. 万能提示词:您是一名顶尖的提示词优化专家,请按以下步骤优化下方提示: 分析原提示的模糊性、冗余项和潜在歧义。 基于,重构提示结构(可参考 CRISPE/BROKE 框架)。 生成 3 个优化版本,并解释每版的改进逻辑。 7. 如果官网的搜索不能用,一直崩溃,可以用火山的满血版,在视频的最后 10 分钟左右有手把手教程。 8. 关于 DeepSeek 的论文解读,有直播视频回放和相关论文下载,如。
2025-02-18
deepseek使用说明
DeepSeek 的使用说明如下: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 生成单词:输入单词主题、图片风格、单词数量,选择 deepseekr1 模型,可生成指定数量的单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词方面,作为专业的单词生成助手,要围绕用户输入主题挖掘相关英语单词,仅输出相关内容,并以规定的数组形式呈现。 产品情况:Deep Research 是基于 AI 模型的产品,使用 GPT4o、o3 等推理模型,结合 UI 交互、搜索引擎等。DeepSeek 只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。
2025-02-18
清华104页AI使用指南
以下是清华 104 页 AI 使用指南的相关内容: 智能纪要部分: 共学课程涵盖 config UI 从入门到精通,还有个人专栏研究报告、产品数据、全球投融资情况等内容,做项目时可查看细分赛道融资情况,也可学习 AI 功能创业,介绍了企业专栏内容如 Kimi 的技巧等。 提到了 AI 的案例和投稿,包含开发相关、微信机器人、人物角色等内容,还有日报动态、法律法规、历史更新和社区介绍等,布置了关于 AI 兴趣方向的小作业。 介绍了 CONFIUI 生态大会东京站 11 月 16 17 日的活动内容及报名,包括社区共创项目、大奖、首届活动情况、海外创作者共学等。 总结了关于 AI 知识库使用及 AIPO 活动的介绍,包括使用情况、发起背景、内容安排及相关资源等;AIPO 线下活动及 AI 相关探讨,包括规则、玩法、重要地位和研究方向等;way to AGI 社区活动与知识库介绍,包括活动安排、材料准备、使用和内容更新等;还包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 介绍了 AI 相关技术与活动,如 AI 音乐创作、数字人语音合成、config UI 的应用,以及社区共创项目如东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等,还有作业与报名、线下寄送物料组织活动、AI 春晚即将开始、AIPO 活动及相关挑战、共学活动与技能提升、硬件机器人材料购买、自媒体发布与流量扶持、活动奖项与历史玩法、工具使用与新大赛预告等。
2025-02-17
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17