Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你使用的是哪家基础大模型?

Answer

目前常见的基础大模型包括:

  • Fooocus 程序默认用到了 3 个 SDXL 的模型,分别是一个 base,一个 Refiner,和一个 LoRA。其大模型(base 和 Refiner)默认放在:Fooocus_win64_1-1-10\Fooocus\models\checkpoints;LoRA 模型默认放在:Fooocus_win64_1-1-10\Fooocus\models\loras。如果单独安装,需要下载三个模型:SDXL 基础模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors;refiner 模型:https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors;LoRA 模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_offset_example-lora_1.0.safetensors。如果部署了 SD 秋叶包,也可以共用模型(大模型和 LoRA),可在 Fooocus_win64_1-1-10\Fooocus\modules\path.py 中修改路径为秋叶包模型对应的路径。配置好后点击 run.bat 文件启动。
  • 在大型语言模型方面,主要有以下几家:OpenAI 制作了 GPT-3.5 和 GPT-4,它们驱动了 ChatGPT 和微软的 Bing(在 Edge 浏览器上访问);Google 在 Bard 的标签品牌下有各种模型;Anthropic 制造了 Claude 和 Claude 2。
  • 每个微调工作都从一个默认为 curie 的基本模型开始,模型可以是 ada、babbage、curie 或 davinci。您可以使用 OpenAI CLI 开始微调工作,具体操作及相关注意事项如上述说明。
Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】SD的大哥Fooocus重磅问世,三步成图傻瓜式操作

大模型(base和Refiner)默认放在这里:\Fooocus_win64_1-1-10\Fooocus\models\checkpointsLoRA模型默认放在这里:\Fooocus_win64_1-1-10\Fooocus\models\lorasFooocus程序默认用到了3个SDXL的模型,一个base,一个Refiner,和一个LoRA。如果单独安装,这里需要下载三个模型:SDXL基础模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensorsrefiner模型:https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensorsLoRA模型:https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_offset_example-lora_1.0.safetensors如果你部署了SD秋叶包,也可以共用模型(大模型和LoRA),可以这里找到path.py文件:Fooocus_win64_1-1-10\Fooocus\modules\path.py,用text记事本打开,修改路径为秋叶包模型对应的路径:大模型路径,比如:sd-webui\models\Stable-diffusion\SDXLLoRA模型路径:比如sd-webui\models\lora都配置好之后,点击run.bat文件启动。

如何使用 AI 来做事:一份带有观点的指南

当我们现在谈论人工智能时,我们通常谈论的是大型语言模型或简称为LLMs。大多数AI应用程序都由LLM驱动,其中只有几个基础模型,由少数几个组织创建。每家公司都通过聊天机器人直接访问他们的模型:OpenAI制作了GPT-3.5和GPT-4,它们驱动了[ChatGPT](https://chat.openai.com/)和微软的[Bing](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx&sydconv=1)(在Edge浏览器上访问)。Google在[Bard](https://bard.google.com/)的标签品牌下有各种模型。Anthropic制造了Claude和[Claude 2](https://claude.ai/)。还有其他我不会讨论的LLMs。第一个是[Pi](https://pi.ai/talk),一个由Inflection构建的聊天机器人。Pi针对对话进行了优化,真的、真的想成为你的朋友(真的,试试看我在说什么)。它不喜欢做除了聊天之外的任何事情,尝试让它为你工作是一种令人沮丧的事情。我们也不会涵盖任何人都可以使用和修改的各种开源模型。它们通常对今天的普通用户来说不是很容易使用或有用,但是有真正的希望。未来的指南可能会包括它们。因此,这是一份快速参考图表,总结了LLM的现状:

微调(Fine-tuning)

以下假设您已经按照上述说明准备了训练数据。使用OpenAI CLI开始微调工作:您从哪里BASE_MODEL开始的基本模型的名称(ada、babbage、curie或davinci)。您可以使用后缀参数自定义微调模型的名称。运行上面的命令会做几件事:1.使用文件API上传文件(或使用已经上传的文件)2.创建微调作业3.流式传输事件直到作业完成(这通常需要几分钟,但如果队列中有很多作业或您的数据集很大,则可能需要数小时)每个微调工作都从一个默认为curie的基本模型开始。模型的选择会影响模型的性能和运行微调模型的成本。您的模型可以是以下之一:ada、babbage、curie或davinci。请访问我们的定价页面,了解有关微调费率的详细信息。开始微调作业后,可能需要一些时间才能完成。在我们的系统中,您的工作可能排在其他工作之后,训练我们的模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。如果事件流因任何原因中断,您可以通过运行以下命令恢复它:工作完成后,它应该显示微调模型的名称。除了创建微调作业外,您还可以列出现有作业、检索作业状态或取消作业。

Others are asking
你好,请问,哪家的智能体最适合处理excel表格
目前有以下几种智能体适合处理 Excel 表格: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,能通过聊天形式让用户告知需求,自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-02
AI 数字人哪家的好
以下为您介绍一些较好的 AI 数字人相关的资源和产品: 1. 数字人躯壳构建: 可以使用 web 前端页面(Live2D 就提供了 web 端的 SDK)或者 Native 的可执行程序进行部署。笔者的开源数字人项目(项目地址:https://github.com/wanh/awesomedigitalhumanlive2d)选择了 live2d 作为数字人躯壳,因为这类 SDK 的驱动方式相比现在的 AI 生成式的方式更加可控和自然,相比虚幻引擎这些驱动方式又更加轻量和简单。另外超写实的数字人风格在目前的技术能力下,处理不好一致性问题,容易带来虚假的感觉或者产生恐怖谷效应,而卡通二次元的形象给人的接受度更高。关于 live2d 的 SDK 驱动方式可以参考官方示例:https://github.com/Live2D。 2. 数字人课程: 强烈推荐卡尔的 AI 沃茨做的这门数字人课程,一共 15 节视频课,持续更新还会不定时增加最新的数字人内容,附赠课外社群辅导,专门解决数字人相关的问题。关于卡尔,从创建 AIGC 开源学习网站 learnpromptl.pro,到建立卡尔的 AI 沃茨万人社群,他一直致力于 AI 学习圈。这一次,他建立了一套完整的数字人学习体系,放在这门《克隆你自己》的课程中,带领大家全方位掌握数字人各技能。同时,他详细回顾了 2023 年数字人领域的破圈事件,如 AI 马斯克对谈 AI 乔布斯超 331.9k 播放、霉霉说中文火遍全网、AI 郭德纲讲英文相声、硅语翻译|海外明星送出中文新年祝福、通义千问|兵马俑跳科目三、小冰推出支持交互的多模态数字人、阿根廷新总统用 HeyGen 做演讲等。数字人的出现,可以极大程度上优化工作流,尤其在制作个人 ip 短视频、配音、直播甚至到智能客服、虚拟偶像等各种领域都可以完成赋能。如果您想加入这场数字人浪潮,拥有自己的数字分身,优化自己的工作流,这门具备完整数字人学习体系的课程,正是您的需求。(扫码可以查看课程详细内容和介绍) 3. 算法驱动的数字人相关开源代码: ASR 语音识别:openai 的 whisper:https://github.com/openai/whisper ;wenet:https://github.com/wenete2e/wenet ;speech_recognition:https://github.com/Uberi/speech_recognition 。 AI Agent:大模型部分包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等等。Agent 部分可以使用 LangChain 的模块去做自定义,里面基本包含了 Agent 实现的几个组件 。 TTS:微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费;VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声;sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 当然这种简单的构建方式还存在很多的问题,例如:如何生成指定人物的声音?TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作?数字人如何使用知识库,做出某个领域的专业性回答?
2024-12-23
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 国产哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前国产的 AI 产品中,很难说哪一家 100%能够保证回答正确且不会瞎说。不同的产品在不同的领域和场景中可能表现各异。您可以考虑一些在教育领域有一定口碑和应用案例的产品,并进行充分的测试和评估。 3. 以下是一些创建智能体的建议: 明确智能体的职责和功能,例如是主要进行课程规划、生成测验还是提供学习指导等。 为智能体提供详细准确的提示词,清晰地描述其任务和目标。 像导演一样,将复杂的任务拆分成科学合理的步骤,并确保每个步骤的结果能为后续步骤提供基础。 对于生成的内容,要进行检查和优化,不断调整和改进智能体的表现。 此外,您还可以参考一些相关的提示词库,例如沃顿商学院给教师和学生的提示词库,其中包含了结构化题型设计师和测验生成器等方面的内容。同时,很多 AI 网站都支持创建智能体,您可以为其配置提示词、知识库和能力等。
2024-11-21
如果想创建一个指导高中孩子学习的老师的智能体,我有几个问题:1. 是弄一个全科的智能体还是每门科单独弄一个智能体? 2. 哪家的AI产品弄这种智能体比较适合?也就是说回答100%能够正确,不会瞎说; 3.你有什么建议?
对于创建指导高中孩子学习的老师的智能体,以下是一些建议: 1. 关于是创建全科智能体还是每门科单独创建智能体,这取决于您的具体需求和使用场景。如果您希望能够全面、综合地指导学生的学习,全科智能体可能更合适;但如果您想要针对每门学科进行更深入、专业的指导,那么每门科单独创建智能体可能效果更好。 2. 目前在创建这种智能体方面,一些常见的 AI 产品如 GPT4、Gemini 等都可以考虑。然而,要确保回答 100%正确且不会瞎说是具有一定难度的,因为 AI 的回答仍然受到数据和算法的限制。 3. 以下是一些额外的建议: 参考沃顿商学院给教师和学生的提示词库,例如其中的结构化题型设计师和测验生成器的相关提示。 像导演一样,将创建智能体的任务拆解成科学合理的步骤,明确每个步骤的目标和结果。 注意提示语的逻辑,将复杂任务拆分成多个相互关联的步骤,使前一步的结果成为后一步的基础。 很多 AI 网站都支持创建智能体,您可以根据配置信息、知识库和能力配置等来自行定制。
2024-11-21
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
你的知识库更新到什么时候,用的是哪家的大模型
以下是关于大模型的相关知识: 大模型与小模型的区别:小模型在特定任务上表现出色,但只能用于特定任务;大模型像多功能基础平台,能处理多种任务,应用范围广泛且拥有更多通识知识。 大模型的知识范围:大模型并不拥有无限知识,其知识来源于训练过程中接触的数据,这些数据有限,且训练后知识库不会自动更新,在某些特定或专业领域的知识可能不够全面。 大模型的运作机制:主要通过大量数据训练学习语言结构和模式,根据输入生成相应文本,类似于词语接龙游戏。 常见的大模型:包括 OpenAI 的 3.5 和 4 版本,微软 Bing 使用 4 和 3.5 的混合,谷歌的 Bard 由 PaLM 2 等基础模型驱动,Anthropic 的 Claude 2 具有非常大的上下文窗口,且不太可能恶意行事。 关于知识库的更新时间和使用的具体大模型,上述内容未明确提及。
2024-11-07
语文教学如何使用大模型
在语文教学中使用大模型,可以参考以下方面: 1. 提示词设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更随机、多样化或具创造性的产出。对于质量保障等任务,可设置低参数值;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确答案时调低参数值,想要更多样化答案时调高。一般改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,减少响应中单词的重复。 2. 了解大模型: 大模型通俗来讲是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 训练和使用大模型可类比上学参加工作:找学校(需要大量 GPU 计算)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 Token 是模型处理和生成的文本单位,在将输入进行分词时会形成词汇表。 需要注意的是,在实际应用中,可能需要根据具体的教学需求和场景进行调整和实验,以找到最适合的设置和方法。
2025-02-17
如何利用大模型写教案
利用大模型写教案可以参考以下要点: 1. 输入的重要性:要输出优质的教案,首先要有高质量的输入。例如,写商业分析相关的教案,如果没有读过相关权威书籍,输入的信息缺乏信息量和核心概念,大模型给出的结果可能就很平庸。所以,脑海中先要有相关的知识概念,这来自于广泛的阅读和学习。 2. 对大模型的理解:大模型通过输入大量语料获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可以类比为上学参加工作,包括找学校(需要大量计算资源)、确定教材(大量数据)、找老师(合适的算法)、就业指导(微调)、搬砖(推导)等步骤。 3. 与大模型的交互: 提示词工程并非必须学习,不断尝试与大模型交互是最佳方法。 交互时不需要遵循固定规则,重点是是否达成目的,未达成可锲而不舍地尝试或更换模型。 用 Markdown 格式清晰表达问题,它具有结构清晰、能格式化强调关键部分、适用性广等优点,有助于大模型更好地理解用户意图。
2025-02-17
大模型评测
以下是关于大模型评测的相关信息: FlagEval(天秤)大模型评测体系及开放平台: 地址: 简介:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造中文大模型的知识评估基准: 地址: 简介:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:SuperCLUE 琅琊榜 地址: 简介:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。 此外,还有小七姐对文心一言 4.0、智谱清言、KimiChat 的小样本测评,测评机制包括: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:第一轮是复杂提示词理解和执行,包括 Markdown+英文 title 提示词测试、Markdown+中文 title 提示词测试、中文 title+自然段落提示词测试;第二轮是推理能力(CoT 表现);第三轮是文本生成能力(写作要求执行);第四轮是提示词设计能力(让模型设计提示词);第五轮是长文本归纳总结能力(论文阅读)。 测试大模型质量好坏时,常用的问题包括检索和归纳、推理性、有日期相关历史事件等。以下是几个专业做模型测评的网站:
2025-02-17
ai大模型
AI 大模型是一个复杂但重要的概念。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。
2025-02-17
我是一个ai小白,请给我推荐一个语言大模型的提示词优化工具
以下为您推荐两个语言大模型的提示词优化工具: 1. 星流一站式 AI 设计工具: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 支持自然语言和单个词组输入,中英文均可。 启用提示词优化后可扩展提示词,更生动描述画面内容。 小白用户可点击提示词上方官方预设词组进行生图。 写好提示词需内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,利用“加权重”功能让 AI 明白重点内容,还有翻译、删除所有提示词、会员加速等辅助功能。 2. Prompt Perfect: 能够根据输入的 Prompt 进行优化,并给出优化前后的结果对比。 适合写论文、文章的小伙伴,但使用该能力需要消耗积分(可通过签到、购买获得)。 访问地址:
2025-02-17
开源模型和闭源模型
开源模型和闭源模型的情况如下: 专有模型(闭源模型):如 OpenAI、Google 等公司的模型,需访问其官方网站或平台(如 ChatGPT、Gemini AI Studio)使用。 开源模型: 可使用推理服务提供商(如 Together AI)在线体验和调用。 可使用本地应用程序(如 LM Studio)在个人电脑上运行和部署较小的开源模型。 例如 DeepSeek、Llama 等开源模型。 Qwen 2 开源,具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进性能,超越目前所有开源模型和国内闭源模型,在代码和数学性能等方面显著提高。 金融量化领域的大模型正趋向闭源,几个巨头的核心模型如 OpenAI 最新一代的 GPT4、Google 的 Bard 以及未来的 Gemini 短时间内不会公开。Meta 的 LLaMA 目前开源,但未来可能改变。OpenAI 未来可能开源上一代模型。
2025-02-17
零基础,如何开始学搭建
对于零基础学习搭建,以下是一些建议和相关资源: 从网站搭建方面,您可以参考以下直播内容: 大雨将介绍软件安装情况并分享零基础搭建可修改网站的目标。在直播中,大雨会先介绍需要下载的东西并去转发,还会询问观众编程基础、学习目标等。当天目标是搭建网站并修改,目的是降低编程难度。 大雨介绍了自己的职业背景,包括曾在央企做架构师、外企做咨询顾问、互联网公司产品经理,现在运营公众号。他提到去年开始认识一些人,上个月在切磋大会后开始做 AI 编程相关的事,表示做编程不是为成为程序员,而是提高日常工作学习效率,还提及后续的共学安排。 共学搭建网站部分,主要围绕搭建自己网站所需的账号注册展开,包括 GitHub 与 Radio 账号注册流程。 关于 Stable Diffusion 方面,您可以在知乎上查看以下教程: 深入浅出完整解析 Stable Diffusion(SD)核心基础知识,涵盖系列资源、核心基础原理、核心网络结构解析、搭建使用推理流程、经典应用场景、训练自己的 AI 绘画模型等多个方面。 如果您想搭建 AI 微信聊天机器人,可以参考以下内容: 纯 GPT 大模型能力的微信聊天机器人搭建,重点是修改 dockercompose.yml 文件中的具体配置来串联微信号和已创建好的 AI 机器人。配置时需留意相关参数,如私聊或群聊的触发前缀、群组自动回复的配置等。
2025-02-16
配置“DeepSeek-R1”模型的 API key:基础 URL 为 https://ark.cn-beijing.volces.com/api/v3,填好之后点击保存,关掉提醒弹窗。请对于这一步进行细节说明
以下是配置“DeepSeekR1”模型的 API key 的详细步骤: 1. 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台)。 2. 创建一个接入点:点击在线推理创建推理接入点。 3. 为接入点命名为“DeepSeekR1”。如果出现“该模型未开通,开通后可创建推理接入点”的提示,点击“立即开通”,勾选全部模型和协议,一路点击开通(免费)。如果无提示则直接到第 5 步,点击确认接入。 4. 确认以下无误后,点击“确认接入”按钮。 5. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”,复制这个推理点的 ID 放到微信里保存。 6. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。如果已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】,复制好之后,放到微信里保存。 7. 也可以使用其他插件,下面为举例示意使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 8. 打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件,点击打开。 9. 基础 URL 填写:https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 10. 配置完成。
2025-02-15
如何零基础入门
以下是零基础入门 AI 的一些建议: 1. 学习 Cursor: 下载 Cursor:https://www.cursor.com/ 注册账号,可用邮箱如 google/github/163/qq 邮箱,接受二维码登录。 安装中文包插件。 参考相关文章: 在设置中 Rule for AI 配置,按 ctrl/cmd+i 输入需求。 2. 成为 AI 提示词工程师: 岗位技能要求包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象出来集成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 零基础小白学习建议:找网上的基础课程,看科普类教程,阅读 OpenAI 的文档以理解参数作用。 推荐练手的 Prompt 工具和相关教程文档。 3. 学习 Stable Diffusion: 可参考 Nenly 发布的零基础入门课及配套学习文档。 了解安装攻略,包括如何安装、启动软件。 下载课程内提及的模型文件、扩展插件及所需素材。
2025-02-14
零基础如何学习AGI
对于零基础学习 AGI,以下是一些建议和相关学习资源: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始,麦橘分享的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始,梦飞分享的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始,银海分享的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始,南墙分享的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。 3. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-13
我是AI小白,希望到这里学习AI基础知识
以下是为您整理的 AI 基础知识学习内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习的定义及其之间的关系,以及其主要分支和联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 7. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 8. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 9. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-12
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
你会使用DeepSeek来回答问题吗
DeepSeek 是一款具有独特特点和优势的深度推理模型。其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。它能够理解用户用“人话”表达的需求,无需用户学习特定提示词模板。在回答问题时能够进行深度思考,并非简单罗列信息。还可以模仿不同作家的文风进行写作,适用于多种文体和场景。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它与 OpenAI 现在最先进的模型 o1、o3 同属基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,以提升最终回答的质量。这种“自问自答”并非简单自言自语,而是模拟人类的深度思考。从用户初始问题出发,唤醒所需推理逻辑与知识,进行多步推导,为最终回答提供更完备的思考准备。DeepSeek R1 的“聪明”源于其独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。 更多提示词技巧请查看 。
2025-02-17
有没有lora怎么使用的教程
以下是关于 Lora 使用的教程: 1. 港风胶片 Lora 模型使用方法: 方法 1:利用上一期活动图片反推工作流,使用唯美港风图片进行反推提示词,在大模型后接一个墨悠_胶片 Lora。上一期活动链接:。胶片 Lora 链接:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 方法 2:利用抱脸的 joycaption 图片反推提示词,然后在哩布上跑 flux 文生图工作流。 joycaption 链接(需要魔法):https://huggingface.co/spaces/fancyfeast/joycaptionprealpha 文生图工作流: 在哩布上跑文生图:https://www.liblib.art/modelinfo/e16a07d8be544e82b1cd14c37e217119?from=personal_page 2. Comfyui SDXLLightning 中 Lora 的使用: SDXLLightning 是字节跳动推出的高速文本生成图像模型,包含完整的 UNet 和 LoRA 检查点。用户可以使用 Diffusers 和 ComfyUI 等框架进行配置。模型地址:https://huggingface.co/ByteDance/SDXLLightning/tree/main 。 实际使用时,拿 Lora 的使用来做介绍,使用方法和平常的 Lora 用法一样,但需要注意 CFG 值需要调小,一般设置为 1,另外步数设置根据使用的 Lora 步数为准。 3. Stable Diffusion 中 Lora 的使用: 当想要生成多张同一张脸的照片时,需要用到 Lora 模型。Lora 可以固定照片的特征,如人物特征、动作特征、照片风格。 点击“生成”下面的第三个按钮,弹出新的选项框,找到 Lora,就会出现下载保存到电脑的 Lora 模型。 点击要用的 Lora,会自动添加到关键词的文本框里面。Lora 可以叠加使用,但建议新手不要使用太多 Lora,每个 Lora 后面的数字用于调整权重,一般只会降低权重。 选择 Lora 时,要根据最开始想要生成的照片类型来选择,比如想生成真人模特,对应的 Lora 也要选用真人模特。
2025-02-17
我应该如何使用AI帮助自己的学习?
以下是使用 AI 帮助自己学习的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,使用 AI 进行英语学习和数学学习可以这样做: 英语学习: 利用 AI 写作助手(如 Grammarly)进行英语写作和语法纠错,改进英语表达和写作能力。 使用语音识别应用(如 Call Annie)进行口语练习和发音纠正,让 AI 提供实时反馈和建议。 使用自适应学习平台(如 Duolingo)利用 AI 技术为您量身定制学习计划,提供个性化的英语学习内容和练习。 利用智能对话机器人(如 ChatGPT)进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 使用自适应学习系统(如 Khan Academy)结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。 利用智能题库和作业辅助工具(如 Photomath)通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 使用虚拟教学助手(如 Socratic)利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 参与交互式学习平台(如 Wolfram Alpha)的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 需要注意的是,因为 AI 可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。同时,内容由 AI 大模型生成,请仔细甄别。
2025-02-17
使用COZE搭建智能体的步骤
使用 COZE 搭建智能体的步骤如下: 1. 梳理手捏 AI Agent 的思路: 在上篇文章中提到过 Prompt 工程的必备能力,即通过逻辑思考,从知识经验中抽象表达出关键方法与要求,这一理念同样适用于在 Coze 中创建 AI Agent。 搭建工作流驱动的 Agent 简单情况可分为 3 个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能。 完善:全面评估并优化 Agent 效果。 2. 分步构建和测试 Agent 功能: 首先进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 其中,左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 而编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 接下来,按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 3. 全面评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-02-17