直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI的算法逻辑是什么

回答

AI 的算法逻辑是一个复杂而广泛的概念。

最初,查尔斯·巴贝奇发明了计算机,其按照一套明确定义的程序即算法来对数字进行运算。现代计算机虽比 19 世纪的原始计算机模型先进得多,但仍遵循相同的受控计算理念。若知道实现某些目标所需的每一个步骤及其顺序,就能编写出程序让计算机按想法做事。

但有些任务无法明确编程,比如根据照片判断一个人的年龄。我们能做是因为见过很多不同年龄的人,但无法明确大脑具体通过哪些步骤完成,所以也无法编写明确程序让计算机完成。这类任务正是人工智能感兴趣的。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

人工智能简介和历史

人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。

其他人在问
去ai味
要去除 AI 味,可以从以下几个方面入手: 1. 对于聊天 AI,使其变得不正经、放肆、幽默、通俗。注意语气的自然化,比如使用语气词嗯、吧、啊、哈哈哈等,让回答更自然、贴近日常对话风格。还要注意口语化词语(相对于书面语)的使用,不过增加网络语言语料库需谨慎,以免生搬硬套带来副作用。 2. 对于睿声生成的配音,若语速慢有 AI 味儿,可使用剪映的音频变速功能加速配音,以消除 AI 味儿并配合视频前段的快节奏。 3. 对于 GPT 的回复,避免其用 1、2、3、4 或“首先、其次、最后”这种模式,可让其扮演特定角色并给出明确输出要求。但这种方法可能换汤不换药,要想让其更有趣,可让它在回复中加点感情,比如用括号补充动作,营造特定环境等。
2024-09-19
可以建立知识库的ai有哪些
以下是一些可以建立知识库的 AI 工具和平台: 1. 飞书软件:例如“通往 AGI 之路”,您可以在飞书大群中与机器人对话获取对应的资料。 2. Coze:在“大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库”中有相关介绍。 3. Mem:如 https://get.mem.ai/ ,它可以保存组织中每次会议的记录,并在人们开始新项目时主动建议相关的决策、项目或人员,节省时间。 4. GPT:通过 OpenAI 的 embedding API 解决方案,可以搭建基于 GPT API 的定制化知识库,但需要注意其免费版 ChatGPT 一次交互的容量限制。
2024-09-19
notion ai的功能
Notion AI 具有以下功能: 直接在 Notion 中接入 AI 的能力,能让工作更迅速,写作更出色,思考更伟大。 可以在笔记和文档中应用 AI 的力量。 能够实现 AI 数据库自动填充功能。 可以改变知识管理的方式,让人们摆脱繁琐的信息组织工作,用户只需简单地将信息丢到 Notion 中,就可以通过各种方式进行检索。
2024-09-19
PopAI的功能
PopAI 是一款办公效率工具,具有以下功能: 1. 类似 ChatGPT 的聊天功能。 2. 集成了众多工作中可用的效率工具,如 PPT 和流程图生成、提示生成等。 3. 率先集成了 GPT4V 的图像 API 且调教良好,能清晰解释图像相关内容。 4. 具有创新的交互,在回答内容后可进行如翻译为中文、扩写重新排版并添加内容变为一篇文章等“Enrich”操作。 5. “Enrich”操作不仅不是干巴巴的填充,还会配合相关图片,必要时绘制流程图。
2024-09-19
popai 的功能
Poe 是一个 AI 聊天网站,支持与多个智能 AI 机器人(如 GPT4 等)进行实时在线交流。注册账号后可免费使用,部分功能需要付费订阅。不同的 AI 机器人有不同特点,可根据需求选择使用。总体而言,Poe 为用户提供了便捷的智能对话体验。其官网地址是:https://poe.com/ ,在官网帮助中心上可以找到具体教程。 此外,Poe 平台还推出了其他多种功能,比如多个机器人一起聊天、文件上传和视频输入等。Odyssey 是一个能提供好莱坞级别的 AI 视频生成和编辑工具的项目。PaintsUndo 可以输入静态图像自动生成整个绘画的全过程视频,该项目主要研究和再现数字绘画中的绘画行为,为数字艺术创作提供新的工具和方法。更多详细介绍可参考:https://xiaohu.ai/p/10996 、https://x.com/imxiaohu/status/1810574723048489063 、https://xiaohu.ai/p/11005 、https://x.com/imxiaohu/status/1810589354114626008 、https://xiaohu.ai/p/11010 、https://lllyasviel.github.io/pages/paints_undo/
2024-09-19
可用于记笔记的ai有哪些
以下是一些可用于记笔记的 AI 相关产品: 1. MeetRecord:这是一家专注于销售通话记录和辅导的软件公司。其核心功能包括 AI 驱动的笔记记录,能通过人工智能技术自动记录和分析销售通话,提供会议内容的关键词和主题分析,自动生成会议纪要和行动项;还有个性化辅导计划,能生成个性化的辅导计划,模仿表现最好的销售人员,并实施自动呼叫评分系统;此外,还具备交易智能和推荐、CRM 自动化、多语言支持以及安全性与企业化支持等功能。 2. 目前没有更多明确提及专门用于记笔记的其他 AI 产品的相关信息。但在一些关于人工智能的讨论中,提到了手写笔记对于信息留存和思维培养的重要性,例如在关于防止 AI 取代人类思考的论述中,指出手写笔记有助于将信息从短期记忆转移到长期记忆,成为更好的概念思考者。
2024-09-19
智能算法的应用场景有哪一些
智能算法的应用场景广泛,以下为您列举一些常见的应用场景: 1. 医疗保健: 医学影像分析,辅助诊断疾病,如 X 射线、CT 扫描和 MRI 图像分析。 药物研发,加速识别潜在药物候选物和设计新治疗方法。 个性化医疗,分析患者数据以提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,识别和阻止欺诈行为,降低金融机构风险。 信用评估,帮助金融机构做出更好的贷款决策。 投资分析,分析市场数据辅助投资者做出明智决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐,分析客户数据推荐可能感兴趣的产品。 搜索和个性化,改善搜索结果并提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高产品质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化交通信号灯和交通流量缓解拥堵。 物流和配送,优化物流路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他领域: 教育,实现个性化学习,为学生提供定制化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 此外,KNN 近邻算法也有多种应用场景,包括: 分类问题,如文本分类、图像识别、手写数字识别、医学诊断等。 回归问题,如房价预测、股票价格预测等。 异常检测,识别异常值或离群点。 推荐系统,基于用户兴趣相似性进行推荐。 图像分割,识别图像中的区域。 聚类分析,尤其适用于数据集中簇非明显球形或高斯分布的情况。 人工智能的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2024-09-18
围棋人机博弈是否有用到智能算法的功能
围棋人机博弈有用到智能算法的功能。 早期的国际象棋对弈程序是以搜索为基础,发展出了阿尔法贝塔剪枝搜索算法。在对局开始时,由于搜索空间巨大,采用了基于案例的推理,即从知识库中寻找相似案例来决定棋步。 现代能够战胜人类棋手的对弈程序基于神经网络和强化学习。例如,DeepMind 团队开发的新算法 Deep QNetwork(DQN)可以从经验中学习。2015 年 10 月 AlphaGo 项目首次在围棋中击败人类冠军李世石,之后的 AlphaGo Zero 用新的可以自我博弈的改进算法让人类在围棋领域难以翻盘。 AlphaGO 的价值网络和策略网络以人类高手的对弈数据以及 AI 自我博弈的数据为基础进行训练,并且与蒙特卡洛树搜索有机结合,取得了突破。
2024-09-18
算法和模型是什么关系
算法和模型是相互关联但又有所区别的概念。 模型是对问题或现象的一种抽象表示,它描述了数据之间的关系和模式。例如,在卷积神经网络(CNN)中,其结构就是一种模型,主要用于模式识别任务。 算法则是用于解决问题或实现模型的一系列步骤和方法。在 AI 领域,算法用于训练和优化模型。比如在自然语言处理和图像识别中,某些算法能够使 CNN 在计算上更有效、更快速,从而击败大多数其他算法。 随着我们对大脑工作机制的认知加深,神经网络的算法和模型也会不断发展和进步。 同时,在确保 AI 模型的道德和伦理性方面,也涉及到一系列的算法设计和处理步骤,如数据清洗、算法设计以减少偏见和不公平性、制定道德和伦理准则、保持透明度、接收用户反馈、持续监控、人工干预以及对相关人员进行教育和培训等。 另外,生成式人工智能模型正在从根本上改变我们与计算机的关系,使其有可能成为我们的伴侣,这也对我们对关系的定义提出了新的挑战。
2024-09-15
AI视觉算法
以下是关于 AI 视觉算法的相关内容: GPT4 Vision GPT4 Vision 是 OpenAI 高级模型 GPT4 的创新功能,于 2023 年 9 月推出,能够解释视觉内容和文本,为用户提供更丰富、更直观的交互体验。 GPT4V 模型使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐。它建立在复杂的深度学习算法之上,能有效处理复杂的视觉数据。 GPT4V 允许用户上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。 GPT4V 的工作原理: 利用先进的机器学习技术解释和分析视觉和文本信息。 对庞大数据集进行训练,包括文本和各种视觉元素。 训练过程结合强化学习,采用两阶段训练方法,先掌握视觉语言知识,再对更小、更高质量的数据集进行微调,以提高生成的可靠性和可用性。 计算机视觉 图像分类和物体识别:将图片作为输入,输出图像的内容分类,应用于面部识别。 物体识别:不仅分类或识别物体,还检测物体是否出现在图像中。 图像分割算法:识别物体位置,并标记不同物体对应的像素点,如用于识别 X 光照射图片。 视觉追踪:检测视频中的奔跑者,并追踪其轨迹和运动方向。 自然语言处理 文本分类:识别邮箱或文本中的内容并归类,可用于情绪识别。 信息检索:输入关键字,找出相关文档。 名称实体识别:找出句子中的名称,自动提取电话、姓名、国籍等。 机械翻译:进行语言翻译。 解析与语音部分标注技术:标注句子词性,让 AI 系统找出需留意的词语。 解析器:将单词组合成短语和句子,也是一种分类标签。 语音识别:将麦克风记录的空气高速压力变化数据转化为文本。 触发词检测:识别触发词。 语音 ID 识别:通过倾听说话来识别身份。
2024-09-05
机器学习的原理和算法
机器学习的原理是通过分析数据和推断模型来建立参数,或者通过与环境互动、获得反馈来学习。其算法一般包括以下几种: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 深度学习是一种机器学习算法,使用多层神经网络和反向传播技术来训练神经网络。该领域由 Geoffrey Hinton 开创,他在 1986 年发表了关于深度神经网络的开创性论文,引入了反向传播的概念,突破了感知器的局限。2012 年,Hinton 和他的学生表明,使用反向传播训练的深度神经网络在图像识别方面击败了最先进的系统,大幅降低了错误率。 强化学习是一类用于描述和解决智能体与环境交互问题的机器学习算法。智能体通过与环境不断交互、观察环境和执行动作来学习最优策略,以达到最大化某种累积奖励的目标。强化学习通常涉及三个要素: 1. 状态:描述智能体所处的环境状态。 2. 动作:智能体可以采取的动作。 3. 奖励:智能体根据执行动作和观察结果获得的奖励。强化学习的核心思想是基于试错学习,通过尝试不同的动作并观察结果来逐步调整行为策略,以取得更高的奖励。通常,强化学习算法会利用回报或价值函数来评估行为策略的好坏,并在学习过程中不断更新和调整策略,以达到最大化累积奖励的目标。
2024-08-31
请介绍聚类分析、异常检测算法
聚类分析是一种将数据集中相似的数据点分组在一起的方法。当数据集中的簇不是明显的球形或高斯分布时,KNN 算法也可用于聚类任务。 异常检测算法用于识别数据集中偏离常态的异常数据点。KNN 算法由于可以识别与大多数邻居不同的点,常用于异常检测。此外,大语言模型(LLM)在识别模式和趋势方面表现出色,也适用于异常检测任务,能够基于一个或多个列值来识别异常数据点。
2024-08-23
有做流程图,逻辑图好看的,免费的易操作的工具吗
以下是一些可以绘制流程图、逻辑图且免费易操作的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,可通过拖放界面轻松操作。 2. draw.io(现称为 diagrams.net):免费的在线图表软件,能创建各种类型的图表,包括逻辑视图和部署视图等。 3. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建逻辑视图。 4. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,涵盖逻辑视图和部署视图。 5. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 需要注意的是,虽然这些工具可以辅助创建架构视图,但并非都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑您的具体需求,例如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、偏好在线工具还是桌面应用程序等。内容由 AI 大模型生成,请仔细甄别。
2024-09-19
有什么免费的,普通人好操作的工具帮我制作ppt里的逻辑图吗
以下是一些免费且普通人好操作的可用于制作 PPT 里逻辑图的工具: 1. PlantUML:通过编写描述性文本自动生成序列图、用例图、类图等,辅助创建逻辑视图。 2. Gliffy:基于云的绘图工具,能创建各种架构图,包括逻辑视图和部署视图。 3. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 4. Lucidchart:流行的在线绘图工具,支持多种图表创建,如逻辑视图、功能视图和部署视图,可通过拖放界面轻松操作。 5. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 6. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用。 7. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 8. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 9. draw.io(现称为 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 在选择工具时,您应考虑具体需求,比如是否需要支持特定建模语言、是否需要与特定开发工具集成、是否偏好在线工具或桌面应用程序等。请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。
2024-09-19
有什么工具能帮助我制作ppt里的逻辑图吗
以下是一些可以帮助您制作 PPT 里逻辑图的工具: 1. PlantUML:通过编写描述性文本自动生成序列图、用例图、类图等,有助于创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包含逻辑视图和部署视图。 此外,还有以下工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,如逻辑视图、功能视图和部署视图,可通过拖放界面轻松操作。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-09-19
ai基本运行逻辑
AI 的基本运行逻辑包括以下方面: 大模型与语音技能 NLU 的差异:语音技能 NLU 是通过一系列规则、分词策略等训练而成,运作逻辑规律可观测,具有 ifelse 式逻辑性;大模型凭借海量数据在向量空间中学习知识的关联性形成,运作逻辑难以观测,脱离了 ifelse 的层面。 工作流中的应用: 代码相关:让大模型写代码,可将其输出的代码片段再输入回去让其检查准确性和结构规范性,若有两个 Agent 分别负责 Coding 和 Code Review,效果更佳。 工具利用:如 Kimi Chat 会在互联网上检索相关内容,基于检索结果总结分析并给出结论,其他工具为大模型在获取、处理、呈现信息上做额外补充。 任务规划:Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程运行,例如先识别姿势,再利用相关模型合成新图像,最后进行语音合成输出等。
2024-09-07
帮我写一篇有关aigc的行业分析,标题为《AIGC行业洞察与概览》,其中框架内容包含以下部分,整体3万字 - 概念导入(AI、AIGC) - AI与人的区别 - AI衍生发展历程(诞生、发展、现状-中外各平台产品及语言模型介绍) - AI在社会各领域的应用实践 - AI技术的底层逻辑概览 - AI的弊端以及风险
以下是为您生成的《AIGC 行业洞察与概览》的部分内容: 一、概念导入 (一)AI 人工智能(Artificial Intelligence,简称 AI)是一种目标,旨在让机器展现智慧。 (二)AIGC GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC(全称 AIGenerated Content)。AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 二、AI 与人的区别 三、AI 衍生发展历程 (一)诞生 (二)发展 (三)现状 1. 中外各平台产品及语言模型介绍 (1)语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 GeminiUltra。 (2)图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,代表项目有 Stable Diffusion 和 StyleGAN 2。 (3)音视频生成利用扩散模型、GANs 和 Video Diffusion 等,代表项目有 Sora 和 WaveNet。 四、AI 在社会各领域的应用实践 AIGC 技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 五、AI 技术的底层逻辑概览 (一)机器学习:一种让机器自动从资料中找到公式的手段。 (二)深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 (三)大语言模型:是一类具有大量参数的“深度学习”模型,Large Language Models,简称 LLMs。 六、AI 的弊端以及风险 作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 由于篇幅限制,目前仅能为您提供约 2000 字的内容,距离 3 万字还有较大差距。后续还需要进一步丰富和完善各个部分的细节及案例分析等。
2024-09-03
我想要一个机器人的人设和回复逻辑,这个机器人要像人类更接近真人的对话方式,能够更好地理解和回应各种日常对话场景,包括玩笑、调侃和口水话。这样可以大大提高对话的自然度和真实感。
以下是关于机器人人设和回复逻辑的相关内容: 首先,Bot 的提示(人设与回复逻辑)是一种自然语言指令,告诉大语言模型(LLM)执行任务。编写提示词是搭建 Bot 的第一步,为 Bot 设定身份和目标,提示编写得越清晰明确,Bot 的回复越符合预期。 例如,“Coze 直聘”中的职业助手 Bot 人设是一个专业的职业助手,能够根据用户输入信息为用户精准提供匹配的职位推荐。 “安仔”这个社群运营机器人,基于其作用,目前版本的人设是更专注于 AI 相关的知识回答和服务,以满足初学者的需求,尽量不回答其他无关问题。为提升用户体验,还可以加入一些功能,如长期记忆(总结聊天对话内容用于更好响应用户消息)和设计更加美观的 Bot 开场白。 总之,要让机器人像人类更接近真人的对话方式,能够更好地理解和回应各种日常对话场景,包括玩笑、调侃和口水话,以提高对话的自然度和真实感,需要清晰明确地设定人设和回复逻辑,并不断优化完善。
2024-08-25