直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

通过AI学习和辅助编程入门的学习方法和路径

回答

以下是通过 AI 学习和辅助编程入门的学习方法和路径:

一、AI 基本概念

建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。

二、开始 AI 学习之旅

在「入门:AI 学习路径」中,能找到为初学者设计的一系列课程。特别推荐李宏毅老师的课程,还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有可能获得证书。

三、选择感兴趣的模块深入学习

AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块进行深入学习。

四、AI 与宠物结合的相关内容

  1. AI 宠物助手

    • 基于自然语言处理和计算机视觉的 AI 宠物助手,可以帮助主人更好地照顾宠物。
    • 例如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。
  2. AI 宠物互动玩具

    • 利用 AI 技术开发的智能互动玩具,可以增强宠物的娱乐体验。
    • 例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。
  3. AI 宠物图像生成

    • 使用生成式 AI 模型,可以根据文字描述生成各种宠物形象的图像。
    • 这可以帮助宠物主人定制个性化的宠物形象。
  4. AI 宠物医疗诊断

    • 利用计算机视觉和机器学习技术,可以开发 AI 辅助的宠物医疗诊断系统。
    • 通过分析宠物的症状图像和病历数据,提供初步诊断建议。
  5. AI 宠物行为分析

    • 基于传感器数据和计算机视觉,可以利用 AI 技术分析宠物的行为模式。
    • 帮助主人更好地了解宠物的需求和习性。

学习路径建议

  1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。
  2. 了解宠物行为学、宠物医疗等相关领域知识。
  3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。
  4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。

相关学习资源

  1. OpenAI API 文档(OpenAI):使用 OpenAI API 开发的同学必读,目录:ChatGPT 官方指南
  2. 谷歌生成式 AI 课程(谷歌):注:进阶课程请从第 5 节开始阅读,目录:谷歌生成式 AI 课程
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:AI 怎么和宠物结合?

我总结了以下关于AI+宠物赛道的一些例子和学习路径:1.AI宠物助手-基于自然语言处理和计算机视觉的AI宠物助手,可以帮助主人更好地照顾宠物-例如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等2.AI宠物互动玩具-利用AI技术开发的智能互动玩具,可以增强宠物的娱乐体验-例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等3.AI宠物图像生成-使用生成式AI模型,可以根据文字描述生成各种宠物形象的图像-这可以帮助宠物主人定制个性化的宠物形象4.AI宠物医疗诊断-利用计算机视觉和机器学习技术,可以开发AI辅助的宠物医疗诊断系统-通过分析宠物的症状图像和病历数据,提供初步诊断建议5.AI宠物行为分析-基于传感器数据和计算机视觉,可以利用AI技术分析宠物的行为模式-帮助主人更好地了解宠物的需求和习性学习路径建议:1.掌握基础的机器学习、计算机视觉、自然语言处理等AI技术2.了解宠物行为学、宠物医疗等相关领域知识3.关注业内先进的AI+宠物应用案例,学习其技术实现4.尝试开发简单的AI宠物应用原型,并不断迭代优化

1.1 入门:AI 学习路径

|名称|作者/来源|总结|链接|发布日期|必看星标|图片|<br>|-|-|-|-|-|-|-|<br>|OpenAI API文档|OpenAI|使用OpenAI API开发的同学必读|[目录:ChatGPT官方指南](https://ywh1bkansf.feishu.cn/wiki/As6FwBSktiDMDGkTKOXcqq6snKc)||||<br>|谷歌生成式AI课程|谷歌|注:进阶课程请从第5节开始阅读|[目录:谷歌生成式AI课程](https://ywh1bkansf.feishu.cn/wiki/DTm0way7QiKyHckMXsjc00kIn6e)||||

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

其他人在问
如何结合AI开展自己的创业之路
以下是结合 AI 开展创业之路的一些建议: 1. 辅助创作与学习方面: 可以开发如 AI 智能写作助手帮助用户快速生成高质量文本;AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等,为用户的学习和创作提供支持。 2. 推荐与规划方面: 包括开发 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警方面: 例如开发 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理方面: 涉及开发办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易方面: 有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 在宠物领域与 AI 结合的创业方向及学习路径: 1. 创业方向: AI 宠物助手:基于自然语言处理和计算机视觉的 AI 宠物助手,可以帮助主人更好地照顾宠物,比如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 AI 宠物互动玩具:利用 AI 技术开发的智能互动玩具,可以增强宠物的娱乐体验,例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 AI 宠物图像生成:使用生成式 AI 模型,可以根据文字描述生成各种宠物形象的图像,帮助宠物主人定制个性化的宠物形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,可以开发 AI 辅助的宠物医疗诊断系统,通过分析宠物的症状图像和病历数据,提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,可以利用 AI 技术分析宠物的行为模式,帮助主人更好地了解宠物的需求和习性。 2. 学习路径: 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 了解宠物行为学、宠物医疗等相关领域知识。 关注业内先进的 AI+宠物应用案例,学习其技术实现。 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总之,AI 领域为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-11-05
使用AI赚钱的方法
以下是一些使用 AI 赚钱的方法: 1. 艺术创作:生成式 AI 可用于内容创作,如通过像 Lensa 这样的应用生成肖像画等,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。 2. 就业于相关岗位:学会 AI 技术,如成为数据科学家、机器学习工程师等,在相关岗位工作获得不错的收入。AI 技术在金融、医疗、制造业等各行各业都有应用,掌握 AI 技能可增加就业机会和职业发展可能性。 3. 开发 AI 产品或应用:例如创建自己的 GPTs 等,但大多数人可能难以成功,需要综合考虑多种因素,如对市场和商业的理解等。
2024-11-05
用什么ai工具可以写文献综述
以下是一些可以用于写文献综述的 AI 工具: 1. 文献管理和搜索方面: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作方面: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,有助于提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可帮助精简和优化内容。 3. 研究和数据分析方面: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式方面: LaTeX:结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测方面: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行文献综述写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-05
如何使用ai写文献综述,保证参考文献有正确出处
利用 AI 写文献综述并保证参考文献有正确出处,可以按照以下步骤进行: 1. 确定课题主题:明确您的研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-05
怎么学习AI
以下是关于新手学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 五、持续学习和跟进 1. AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还可以: 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解其基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。
2024-11-05
AI做小游戏工具
以下是关于利用 AI 做小游戏工具的相关内容: 游戏制作过程:通过向 AI 描述需求生成游戏代码,如赛车或平台跳跃类游戏,还可逐步添加功能和调整图像。 工具使用对比:cloud 3.5 比 GPT 在制作小游戏时更方便,GPT 有时会改坏游戏。 图像托管网站:介绍了无需登录、兼容性强的图片托管网站用于上传游戏中的图片。 开发游戏及发布到 GitHub 的经验分享:国内网站托管游戏连接可能更稳定,国外托管图片可能存在显示问题。AI 处理图片与代码时,让 AI 替换图片,若代码出错可让其重新编写,但可能反复出 bug。角色形象可让 AI 直接绘制,更稳定且不存在外部链接问题。游戏文件为 H7ML 格式,托管到 GitHub 要改文件名,后缀为 html 且名为 index。注册 GitHub 账号,设置游戏名,选择公共或锁定,上传文件,可迭代版本并有记录。可让 AI 将整合的 html 文件拆分成固定格式的三个文件。 游戏类型与优化:AI 可编写基础小游戏,如弹珠打砖块,还能尝试多种创意游戏,如 horror game 等。对生成的游戏觉得难玩可让 AI 调整,如控制重力、管道间隙和移动速度等。制作增量游戏,包含升级选项和涅槃系统等机制。介绍肉鸽游戏模式,具有随机性和永久死亡特点。 游戏设定与调整:开发一款被包围主题的游戏,具有永久死亡机制,玩家操纵角色,敌人从四面八方涌来,被敌人碰到即失败。可对玩法进行调整,如子弹发射方式、敌人速度、增加功能等,设定道具掉落概率,变更游戏主题和头像,修改游戏中图案。
2024-11-05
我是初学者,我该如何学习AI知识,如何一步一步的由浅入深的学习呢?
对于初学者学习 AI 知识,由浅入深的学习路径如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-04
帮我写一段120字的英文短文,回答这个问题:讨论终身学习的重要性
Lifelong learning is of great significance. It enables us to keep up with the everchanging world and acquire new skills and knowledge. It broadens our horizons, enhances our adaptability, and enriches our lives. It also helps us stay mentally active and engaged, promoting personal growth and development throughout our lives.
2024-11-04
有没有用于提升学习效率的提示词
以下是一些用于提升学习效率的提示词: 概括:要求对较长内容进行简要概括,例如“请为这篇长篇科技文章提供一个简短的概要。” 讲故事:要求使用讲故事或叙事技巧,比如“请用一个人物的故事来展示运动如何改变了他们的生活。” 优缺点:要求评估主题的优缺点,像“分析使用电子书和纸质书的优缺点。” 利弊分析:对主题的利弊进行分析,例如“分析远程工作的利与弊。” 问题解决:针对特定问题提供解决方案或建议,比如“请提供几个有效的解决睡眠问题的方法。” 最佳实践:要求提供关于某主题的最佳实践或指南,例如“请提供一份关于如何高效学习的最佳实践指南。” 时间线:要求提供事件或发展的时间线,比如“请为互联网的发展提供一个简要的时间线。” 行动呼吁:要求明确的行动呼吁或后续步骤,例如“在关于环保的文章结尾提出具体的环保行动建议。” 分步指南:要求提供过程的分步指南或说明,比如“提供一个关于如何制作自制面包的分步指南。” 历史背景:要求考虑历史背景或背景,例如“在写关于量子计算的文章时,谈论量子计算的历史发展。” 对比:要求比较和对照不同的观点或概念,比如“请比较太阳能和风能作为可再生能源的优缺点。” 教训:要求讨论从特定情况中得到的教训,例如“分享一个关于企业失败的案例,并从中提炼出的教训。” 此外,还有以下相关的提示词: 百晓生:作为世上最好的研究和解释代理,以各种可能的方式以中文解释主题,使其易于理解。 里程碑大师:充分理解用户想学习的技术,并从易到难拆分出学习阶段里程碑的任务。
2024-11-04
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
小白如何学习ai使用呢
对于小白学习 AI 的使用,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于技术纯小白用 AI 开发真正的应用,您可以参考以下经验: 1. 从小白学代码,看 AI 时代人类导师和硅基助教的协作之道: 像案例中作者的女儿,在 Claude 和作者的帮助下,用 Unity 开发了一个 RPG 小游戏。起初作者不相信纯小白能通过 AI 搞定 Unity 程序,但女儿通过让 Claude 教她做一个简单任务,明白了 Unity 里的基本概念。 开发过程有顺利也有挫折,挫折原因包括问题描述不清楚、AI 给的方案复杂、配置错误等。这让作者意识到小白需要通过 AI 能直接搞定的小项目,来先学明白背后的原理,在此基础上才能开发复杂项目。最好有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。 2. 基础小任务: 推荐从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑。这样可以学会必备的调试技能。 如果用的是 o1mini,可以在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果 windows 机器则是 create.cmd),足够勤勉的 o1mini 会为您生成一段超级长的代码,并给出提示,您只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。 3. 明确项目需求: 通过和 AI 的对话,来逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,这样的文档会包含影响技术方案选择的细节,比直接给 AI 一段口头的需求描述要准确得多。在后续开发的时候每次新起一个聊天就把文档发给 AI 并告知您现在在做第几点功能,会非常方便。
2024-11-04
已知直角三角形的两直角边为3和4,编程求出三角形的斜边长度
在直角三角形中,根据勾股定理,斜边的长度等于两直角边长度的平方和的平方根。已知直角边分别为 3 和 4,斜边长度 c 可通过以下公式计算: \[ c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 以下是使用 Python 语言实现的代码: ```python import math a = 3 b = 4 c = math.sqrt print ```
2024-10-23
小朋友应该如何开展学习编程和AI
对于小朋友开展学习编程和 AI,以下是一些建议: 1. 从编程语言入手学习: 可以选择 Python、JavaScript 等编程语言,这些是 AI 和机器学习的基础。 学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向小朋友的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 如果希望在编程方面继续精进,至少熟悉以下 Python 相关内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中是如何工作的。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。
2024-10-19
通过cursor编程的最新资料
以下是关于 Cursor 编程的最新资料: 小白视角: 已经通过 Cursor 跑出来第一个 html 文件,后续将继续探索,包括: 第一弹,一点小小的震撼——cursor 黑客松。 第二弹,文案工作者的福音——cursor 批量写 prompt、写文章。 第三弹,上一辈的崛起——cursor 的“向上”,给爹妈一场安利。 Cursor 官方功能介绍: Chat 聊天:允许与看到代码库的 AI 交谈,能看到当前文件和光标,可通过特定操作添加代码块到上下文或与整个代码库聊天。 Codebase Answers 代码库答案:使用特定操作询问有关代码库的问题,Cursor 会搜索代码库查找相关代码。 引用您的代码:通过@符号引用代码用作 AI 的上下文,键入@可查看文件夹中文件和代码符号列表。 使用图像:点击聊天下方的图片按钮或拖入图片可将视觉上下文包含在聊天中。 询问 Web:使用@Web 从 Internet 获取最新信息,Cursor 会构建搜索查询并搜索 Web 查找相关信息作为附加上下文。 @Web 相关:借助@Web,Cursor 会根据查询和提供的上下文构建搜索查询并在 Web 上搜索以查找相关信息,可在 Cursor 设置中开启“始终搜索 Web”使 Cursor 在每个查询中搜索 Web 聊天。
2024-10-12
ai编程工具有哪些
以下是一些常见的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合的工具。 以下是一些邮件写作的 AI 工具: 1. Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言。网站:https://www.grammarly.com/ 2. Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁。网站:http://www.hemingwayapp.com/ 3. ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成。网站:https://prowritingaid.com/ 4. Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快。网站:https://writesonic.com/ 5. Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。 以下是一些写简历的 AI 工具: 1. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 2. Rezi:是一个受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 3. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。 以上内容由 AI 大模型生成,请仔细甄别。
2024-10-10
ai编程工具有哪些好用
以下是一些好用的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研的基础大模型微调。 7. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习,例如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 应用场景,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括基本概念、发展历程、主要技术(如机器学习、深度学习)以及在各领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。 以下是一些辅助写邮件的 AI 工具: 1. Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言。网站:https://www.grammarly.com/ 2. Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁。网站:http://www.hemingwayapp.com/ 3. ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议,功能强大,支持多种平台和集成。网站:https://prowritingaid.com/ 4. Writesonic:基于 AI 生成各种类型文本,包括电子邮件等,生成速度快。网站:https://writesonic.com/ 5. Lavender:专注于邮件写作优化,提供个性化建议和模板,提高邮件打开率和回复率。
2024-10-10
编程ai
以下是关于编程 AI 的相关信息: 辅助编程的 AI 产品: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,基于通义大模型,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:由 AI 驱动,提供代码建议等帮助。更多产品可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可按需选择。 对于不会代码但想学习 Python + AI 的人,若想深入,至少应熟悉以下内容: Python 基础:包括基本语法(变量命名、缩进等)、数据类型(字符串、整数、浮点数、列表、元组、字典等)、控制流(条件语句、循环语句)。 函数:定义和调用函数、参数和返回值、作用域和命名空间。 模块和包:导入模块、使用包。 面向对象编程(OOP):类和对象、属性和方法、继承和多态。 异常处理:理解异常及如何处理。 文件操作:文件读写、文件与路径操作。 生成性 AI 作为程序员助手是最早的应用之一,模型在大量代码库上训练后为程序员编码提供建议。但编程中正确性至关重要,如研究发现 40%的 AI 生成代码包含漏洞,用户需在生成足够代码提升生产力和保证正确性间找到平衡。Copilot 帮助提高了开发人员生产力,增长约 2 倍或更少,与从汇编跳到 C 语言等先前进步中的生产力提升水平相当。
2024-10-08
入门课程推荐
以下是为您推荐的 AI 入门课程: 1. 微软相关课程: 特定的机器学习云框架,例如。 课程《》。 对话式人工智能和聊天机器人课程《了解更多详情。 2. 基础知识学习: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 3. 深度学习数学: 推荐 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/ 上获取。 4. 学习方式: 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习,例如图像、音乐、视频等。掌握提示词的技巧,上手容易且很有用。 理论学习之后进行实践,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 您可以根据自身情况和兴趣选择适合自己的课程和学习方式。
2024-10-31
入门大模型的简要学习书籍清单
以下是为您推荐的入门大模型的简要学习书籍清单: 1. 《大模型入门指南》: 通俗解释了大模型,即通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 用上学参加工作类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 介绍了 Token 作为模型处理和生成的文本单位,以及其在数字化和形成词汇表中的作用。 2. 《从 0 到 1 了解大模型安全,看这篇就够了》: 介绍了不同类型的模型架构,如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 更擅长自然语言生成任务。 指出目前大型语言模型多为只使用 Decoder 的 Decoderonly 架构,其预训练数据量大,参数多。 提到了大模型在安全性方面的差别。 3. 《走入 AI 的世界》: 以 GPT3 为例,说明了预训练阶段大模型学习的内容和数量,如使用了 4990 亿 token 的数据集,相当于 86 万本《西游记》。 介绍了 Transformer 模型,这是一种处理文本内容的经典架构,不清楚其具体细节不影响使用大模型,感兴趣可通过相关链接深入了解。
2024-10-28
入门大模型的简要学习清单
以下是一份大模型入门的简要学习清单: 1. 理解大模型的底层原理: 了解预训练阶段大模型的学习内容和数据量,例如以 GPT3 为例,其训练使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。 熟悉 Transformer 模型架构,这是处理文本内容的经典架构,虽然具体细节不清楚不影响使用大模型,但感兴趣可通过相关链接深入了解。 2. 掌握大模型的概念: 通俗地说,大模型通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 3. 类比学习大模型的训练和使用过程: 找学校:训练大模型需要大量计算,GPU 更合适,只有有资本购买大量 GPU 的才有能力训练自己的大模型。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:选择合适的算法让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称为推导(infer)。 4. 了解 Token: Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词等,在将输入进行分词时会对其数字化,形成词汇表。
2024-10-28
小白入门ai
对于小白入门 AI,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库有很多大家实践后的作品、文章分享,欢迎您实践后进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,文科生 YoYo 早期只会用 ChatGPT 日常聊天,后来在 coze 平台逐渐沉迷并初步进阶手搓智能体,可以使用 API,在 coze 平台搓过大聪明的 agent,复刻过 kimi 搜索逻辑的智能体。YoYo 认为知识对实践意义重大,并愿意为有相同困惑的小伙伴提供一份 AI 工具逐渐进入状态的 tips 文章。 还有 AJ 推荐的【野菩萨的 AIGC 资深课】,这门课由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。
2024-10-20
如何快速入门学习ai
以下是快速入门学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于不会代码的情况,20 分钟上手 Python + AI 可以这样做: 在深入学习 AI 时,许多朋友因需要编程而感到困难,各类教程默认会打命令行也增加了入门难度。因此有了这份简明入门,旨在让大家更快掌握 Python 和 AI 的相互调用,在接下来的 20 分钟内循序渐进完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 一些背景: 关于 Python: Python 就像哆拉 A 梦,它拥有一个装满各种道具的百宝袋,被称为标准库,遇到问题时可直接使用。如果百宝袋里的道具不够用,还可以通过 pip 一类的工具订购新道具,也可以在 GitHub 一类的分享代码的平台获取。Python 被全世界广泛使用,尤其是在 AI 领域。 关于 OpenAI API: OpenAI 通过两种方式提供服务,其一通过 ChatGPT 提供开箱即用的服务,直接对话即可;其二通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。
2024-10-18
AI的入门知识
以下是关于 AI 入门知识的介绍: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-10-18