直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

可视化ai学习

回答

以下是关于您提到的“可视化 AI 学习”的相关内容:

在数学学习方面:

  1. 自适应学习系统:如 Khan Academy 结合 AI 技术,能提供个性化学习路径和练习题,精准推荐符合您能力和需求的内容。
  2. 智能题库和作业辅助:像 Photomath 利用图像识别和数学推理技术,为您提供数学问题的解答和解题步骤。
  3. 虚拟教学助手:例如 Socratic 借助 AI 技术,能解答数学问题、提供教学视频和答疑服务,助您理解和掌握知识。
  4. 交互式学习平台:参与如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。

关于 AI 的技术历史和发展方向以及当前最前沿的技术点:

  1. 大模型:如 GPT、PaLM 等。
  2. 多模态 AI:包括视觉-语言模型(CLIP、Stable Diffusion)、多模态融合。
  3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。
  4. 小样本学习:像元学习、一次学习、提示学习等。
  5. 可解释 AI:涵盖模型可解释性、因果推理、符号推理等。
  6. 机器人学:涉及强化学习、运动规划、人机交互等。
  7. 量子 AI:包含量子机器学习、量子神经网络等。
  8. AI 芯片和硬件加速。

关于接入 OpenAI 的视觉模型 GPT-4-V: GPT-4 Vision(通常缩写为 GPT-4V)是 OpenAI 高级模型 GPT-4 的创新功能,于 2023 年 9 月推出,能解释视觉内容和文本。它使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐,建立在复杂的深度学习算法之上,能有效处理复杂视觉数据。用户可以上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:如何用 AI 进行英语学习和数学学习

1.自适应学习系统:使用自适应学习系统(如Khan Academy)结合AI技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。1.智能题库和作业辅助:利用智能题库和作业辅助工具(如Photomath)通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。1.虚拟教学助手:使用虚拟教学助手(如Socratic)利用AI技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。1.交互式学习平台:参与交互式学习平台(如Wolfram Alpha)的数学学习课程和实践项目,利用AI技术进行数学建模和问题求解。通过结合AI技术和传统学习方法,您可以更高效、更个性化地进行英语学习和数学学习,并取得更好的学习效果。内容由AI大模型生成,请仔细甄别。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

问:怎么接入OpenAI 的视觉模型GPT4-V?

GPT-4 Vision,通常缩写为GPT-4V,是OpenAI高级模型GPT-4的一项创新功能。GPT-4V于2023年9月推出,使AI能够解释视觉内容和文本。GPT-4以其增强的视觉能力给人留下深刻印象,为用户提供更丰富、更直观的交互体验。GPT-4V模型使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐。GPT-4建立在复杂的深度学习算法之上,使其能够有效地处理复杂的视觉数据。有了这款具有视觉功能的GPT-4,您现在可以分析图像输入并开辟人工智能研发可能性的新世界。将图像功能整合到AI系统(尤其是大型语言模型)中,标志着AI的下一个前沿领域,为突破性应用解锁了新颖的界面和功能。这为与机器进行更直观、更类似人类的交互铺平了道路,标志着向全面理解文本和视觉数据迈出了一大步。简单来说,GPT-4V允许用户上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。想象一下,与一个不仅会听你说什么,还会观察和分析你展示的图片的人交谈。这就是适合你的GPT-4V。

其他人在问
适合辅助英语教学的AI助手或者提示词
以下是一些适合辅助英语教学的 AI 助手和提示词相关的信息: AI 助手: Grammarly:可进行英语写作和语法纠错,改进英语表达和写作能力。 Call Annie:用于口语练习和发音纠正,提供实时反馈和建议。 Duolingo:自适应学习平台,为用户量身定制学习计划,提供个性化英语学习内容和练习。 ChatGPT:可进行英语会话练习和对话模拟,提高交流能力和语感。 提示词: 提示词设计公式之——RTFC: 角色:指定 AIGC 所扮演的角色。 任务:明确告诉 AIGC 要完成什么任务。 要求:概述这个任务需要遵守的规则、标准和实现的结果。 说明:提供更多关于任务和要求的详细具体上下文信息。 生成式人工智能教学应用举例(1):收集整理语料: 帮我列举场景下的常用【英语】词汇 50 个。 把以上词汇转换成表格形式输出。 到【医院就医】的时候,常用的【英语】句型有哪些? 用【英语】表达【心情】【不愉快】的句式有哪些? 在【英语高考作文试题】中,常用的表达句型有哪些?并给出例句。 请你给中学生介绍《论语》的主题思想,并将《论语》的 10 条名句翻译成英语。 注:可以把蓝色字体替换成不同的语种和场景,教师根据不同的教学场景,设计恰当的提示词,用生成式人工智能辅助教学。
2024-11-15
阅读新闻的AI工具
以下是一些常见的阅读新闻的 AI 工具: Elicit:可以让用户直接向文章本身提出问题,有助于在不阅读整篇文章的情况下了解其是否涉及所提问题。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面的写作辅助,包括阅读相关的应用。 此外,还有一些常见的文章润色 AI 工具: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了阅读和文章处理的各个环节,可以根据自身需求选择合适的工具进行使用。
2024-11-15
适合辅助教学的AI助手或者提示词
以下是一些适合辅助教学的 AI 助手和提示词相关的内容: 教师的 AI 减负指南中提到,提示词技能是教师用好人工智能的基本教学技能。提示词技能指用户设计提供给生成式人工智能大模型的一段文字或文本的技能,其内容决定了 AIGC 生成内容的质量。提示词设计公式为 RTFC,包括指定 AIGC 所扮演的角色、明确告诉 AIGC 要完成的任务、概述任务需要遵守的规则、标准和实现的结果,以及提供更多关于任务和要求的详细具体上下文信息。例如,生成式人工智能教学应用举例中,教师可以设计提示词“帮我列举场景下的常用【英语】词汇 50 个”“把以上词汇转换成表格形式输出”等。 对于 SD 新手,有一些提示词相关的资源,如 Majinai: 等。 沃顿商学院给教师和学生提供了提示词库,教师专用提示中提到,作为教学助理,要协助教师规划课程,先向老师介绍自己并询问教学科目及学生层次,等待回复。然后根据老师的情况,如是否有教学大纲等,进行后续的沟通和建议。
2024-11-15
最近一个月最重要的AI动态
以下是最近一个月的一些重要 AI 动态: 2024 年 4 月第二周:谷歌发布了一堆 AI 能力和升级,AI 音乐生成工具 Udio 发布,Open AI 发布 GPT4 Turbo 正式版,AI 画图应用 Ideogram 发布模型更新。 2024 年 4 月第三周:Meta 正式发布 Llama3 8B、70B 模型,Open AI 的 Assistants API 更新等,Reka Core 发布,一个 GPT4 级别的多模态 LLM,Mixtral8X22B 模型开源。 2024 年 4 月第四周:Open AI 的动态包括企业服务、起初研究和 ChatGPT 体验优化。 2024 年 5 月第一周:Claude 推出移动应用以及团队版计划,突然爆火的两款 SD 图像风格,亚马逊推出了 Amazon Q AI 助手。 2024 年 5 月第二周:Open AI 高强度预热发布会,Open AI 宣布和 Stack Overflow 达成合作,Controlnet 作者敏神发布 ICLight 光线融合生成项目。 此外,在过去的一段时间里,人工智能行业发展迅速。在过去 12 个月里,人工智能行业是重要的技术发展之一。从 2022 年 9 月到 2023 年 8 月,研究的工具访问量大幅增长。这一飞跃从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台开始,炒作持续攀升,直到 2023 年 5 月达到峰值,之后虽有回落,但人们的兴趣仍然巨大。 另外,关于如何使用 AI 做事,目前似乎没有完善的用户文档,相关指南多通过 Twitter 影响者获得。作者基于自身经验为学生和读者准备的人工智能入门指南也需不断修改。
2024-11-15
ai工作流
以下是关于 AI 工作流的相关内容: 目前使用 AI 的一些固定和优化的工作流包括: 1. 起床时,让 AI 如“马云”“马化腾”为自己排 TODO 优先级,并进行私董会的脑暴。 2. 工作中有傲娇的 AI 小助理加油,其 Prompt 为要阳光、会撒娇/卖萌。 3. 重点事项方面,如内容创作,拆成 bot 团队组,包括选题、标题、框架、扩写等,并分 A/B 组两个 AIbot 互相改,要点是提供反常识、梗,学习喜欢的 UP 创作方法论。 4. 优化的 bot 包括内容选题 bot、短视频脚本 bot、数据分析 bot(GPT4)、网页 Perplexity 的资料库 bot 等。 5. 优化方面,有 Zion、ChatO 和自动化 AIAgent 分身,基于自身知识库的 bot,以及将上述知识库、Prompt 资产放入飞书的知识库和多维表单中维护,等待飞书的 AI 进化。 6. 备选 50 多个生产力 AI 放在工具库待命输出。 7. 未来计划把整个公司业务搬入飞书中,外接 MJ、ChatBot 分身以及咨询日程预约,可能让所有流量口 bot 也介入飞书,给予飞书做数据分析和内容引擎(目前需手动)。 生成式 AI 的人机协同分为 3 种产品设计模式:Embedding(嵌入式)、Copilot(副驾驶)、Agent(智能代理),不同模式下人与 AI 的协作流程有所差异。 Agentic Workflow 驱动角色工作流变革,使用 Multiagent Collaboration 的方法,让不同角色的 Agent 按照任务要求自主规划选择工具、流程进行协作完成任务。 重塑工作流时,可从原子能力层思考,抽象化拆解大模型的底层能力,如翻译、识别、提取、格式化等,围绕“输入”“处理”“输出”“反馈”构建最底层的信息处理逻辑。 在获取信息方面,搜索引擎和基于大模型的聊天机器人目标一致,如 Kimi Chat 会在互联网上检索相关内容并总结分析给出结论。 Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程运行。 吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作开发应用或复杂程序。 AI Agent 基本框架为“Agent = LLM +规划+记忆+工具使用”,其中大模型 LLM 扮演“大脑”,规划包括子目标分解、反思与改进。
2024-11-15
AI在未来会有什么应用领域
AI 在未来的应用领域非常广泛,包括但不限于以下方面: 1. 交通领域: 自动驾驶,提高交通安全性和效率。 交通管理,优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送,优化物流路线和配送计划,降低运输成本。 无人机送货,将货物快速送达偏远地区。 2. 教育领域:用于个性化学习,为每个学生提供定制化的学习体验。 3. 农业领域:分析农田数据,提高农作物的产量和质量。 4. 娱乐领域:开发虚拟现实和增强现实体验。 5. 能源领域:优化能源的使用,提高能源效率。 6. 数字人领域: 家庭中有数字人管家,全面接管智能家居或其他设备。 学校中有数字人老师,为学生答疑解惑。 商场里有数字人导购,为顾客提供指路、托管个人物品等服务。 7. 工作领域: 执行更复杂的技术任务,如编程、执行连续任务和协助研究工作。 未来可能充当 CEO 管理整个公司。 需要注意的是,人工智能的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2024-11-15
AI如何可以将数据变得可视化
以下是关于 AI 如何将数据变得可视化的相关内容: 1. 在和 Cursor AI 一起学 Python 编程的课程中,第四节介绍了数据可视化与 AI 在语言教学中的应用。课程涵盖 45 分钟,包括数据可视化基础,如 Matplotlib、Seaborn 等绘图库,讲解了数据可视化在研究结果展示中的作用,简述了 AI 技术在语言教学中的应用,如智能批改、对话机器人等。实践实验包括可视化词频分析结果,使用 Matplotlib 绘制词频柱状图,解释图表并讨论其教学意义,还提供了简单的 AI 应用体验,如使用预训练模型对中文文本进行情感分析(视时间而定)。教学目标是能够使用 Python 对数据进行可视化展示,了解 AI 技术在语文教学中的潜在应用,并亲身体验简单的 AI 功能。大作业是和 Cursor 一起实现数据可视化。 2. 对于处理文档和数据,代码解释器可用于执行程序、运行数据分析等,并创建各种文件、网页甚至游戏。Claude 2 用于大型文档或同时处理多个文档,Bing 侧边栏用于较小的文档和网页。还制作了一个初始提示,以设置代码解释器来创建有用的数据可视化。 3. GPT4 Vision 模型能够分析数据可视化,以解释基础数据,并基于可视化提供关键见解。但在测试中仍存在一些错误,且需要人工参与来审查见解,不过该模型可以提高数据解释用例的生产力。
2024-10-27
哪个AI工具可以允许我上传数据,然后进行多种多样的数据可视化?
以下是一些可以允许您上传数据并进行多种多样数据可视化的 AI 工具: 1. GPT4 的代码解释器模式:您可以将文件上传到 AI,允许 AI 编写和运行代码,并下载 AI 提供的结果。它可用于执行程序、运行数据分析,创建各种文件、网页甚至游戏。您还可以设置代码解释器以创建有用的数据可视化。 2. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 3. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 4. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建模型。 5. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 6. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 7. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 8. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 9. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 10. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 11. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,ChatGPT 在数据分析领域也有应用,在个性化分析中可以处理假数据,包括游戏流水数据、产品数据、页面事件统计和用户行为数据等。但在实际业务中处理大量数据时,需要结合实际需求和场景审慎评估其适用性,并进行数据校验。
2024-09-29
智能表格分析、可视化的工具有哪些?
目前常见的用于智能表格分析和可视化的工具包括: 1. Microsoft Excel:功能强大,提供多种数据分析和可视化图表选项。 2. Tableau:专业的数据可视化工具,能够处理大规模数据并创建复杂的可视化效果。 3. Power BI:与微软生态系统紧密集成,具有丰富的可视化组件和数据分析功能。 4. Google Sheets:在线表格工具,支持基本的数据分析和可视化。 5. QlikView 和 Qlik Sense:提供交互式的数据探索和可视化功能。 这些工具各有特点,您可以根据具体需求和使用场景选择适合的工具。
2024-09-20
介绍一下光流的概念,如何计算,以及可视化表达方法
光流是指图像中像素点的运动速度和方向。它描述了图像中物体或场景在连续帧之间的运动情况。 计算光流的方法有多种,常见的包括基于梯度的方法、基于区域匹配的方法和基于相位的方法等。基于梯度的方法通过计算图像灰度的梯度来估计光流;基于区域匹配的方法则是在相邻帧中寻找相似的区域来确定光流;基于相位的方法利用图像的相位信息来计算光流。 光流的可视化表达方法通常有以下几种: 1. 向量场表示:用箭头来表示每个像素点的运动方向和速度大小。 2. 颜色编码:通过不同的颜色来表示光流的方向和速度。 3. 流线图:将光流轨迹以流线的形式展示。
2024-09-16
智能的代码可视化工具
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的智能代码可视化工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,其提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建上述视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 另外,ChatGPT 的代码解释器插件在数据分析与可视化方面也有出色表现。在现代企业和研究环境中,它通过支持强大的数据科学库如 pandas 和 matplotlib,极大简化了数据分析和可视化过程。用户能以自然语言请求指导其进行数据操作和生成图表。例如,市场分析师可分析产品销售数据并展示不同地区销售表现,环境科学家能分析气温变化数据等。但存在中文图示可能无法显示且需上传字体文件的问题,目前暂未解决。
2024-08-21
数据结构代码可视化的工具
以下是一些可以用于数据结构代码可视化的工具: 字节 Coze 本质上是「AIfirst aPaaS」,Bot Builder 属于此类,它把实现一个应用所需的不同类型代码(如数据、状态、API 调用、逻辑、UI 等)用不同的可视化工具来实现,生成的是「配置」,创建的「应用」一部分作为「配置」存储和运行在 Bot Builder 平台自身,一部分存储和运行在各种 Chatbot 平台(如 ChatGPT)。 在软件架构设计中,以下工具可用于绘制逻辑视图、功能视图和部署视图: Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,有拖放界面。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板。 draw.io(现 diagrams.net):免费在线图表软件,支持多种类型图表创建。
2024-08-21
怎么系统学习ai
以下是系统学习 AI 的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 阅读入门文章,熟悉 AI 的术语和基础概念,了解其历史、当前应用和未来发展趋势。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。 6. 课程学习: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 7. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 8. 实践和尝试:理论学习后,通过实践巩固知识,尝试使用各种产品创作作品,并在知识库分享实践成果。 9. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。
2024-11-15
学习coze的教程
以下是一些学习 Coze 的教程资源: 概览与介绍:https://waytoagi.feishu.cn/wiki/YGgzwDfWLiqsDWk2ENpcSGuqnxg 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb 大聪明:保姆级教程:Coze 打工你躺平 https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb Coze “图像流”抢先体验 https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ 一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力 阅读指南:长文预警,请视情况收藏保存 核心看点:通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法 适合人群:任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2024-11-15
我想知道提示词是什么,如何学习提示词
提示词(Prompt)是给语言模型或相关工具的输入文本,用于指定其应执行的任务和生成的输出。以下是关于提示词的学习方法: 1. 理解提示词的作用:提示词向模型提供上下文和指示,其质量直接影响模型输出的质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中查找。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,比较分析输出差异,持续优化构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等,辅助构建和优化提示词。 6. 跟上前沿研究:提示工程是前沿研究领域,持续关注最新成果和方法论。 对于学习 Stable Diffusion 的提示词,这是一个系统性的过程,需要理论知识和实践经验结合,步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读官方文档,了解提示词相关指南。 研究开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉相关领域的专业术语和概念。 研究优秀的图像标题和描述作为范例。 4. 掌握关键技巧: 学习组合多个词条精确描述想要的效果。 掌握使用“()”“”等符号控制生成权重的技巧。 了解处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 用不同提示词生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验。 在社区分享,请教高手获取反馈和建议。 6. 创建提示词库: 按主题、风格等维度建立自己的提示词库。 记录成功案例和总结,方便后续参考复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-15
英语学习相关的ai软件
以下是一些与英语学习相关的 AI 软件: 对于一般的英语学习: Grammarly:智能写作助手,可进行英语写作和语法纠错,提升写作能力。 Call Annie:通过语音识别进行口语练习和发音纠正,提供实时反馈。 Duolingo:自适应学习平台,量身定制学习计划,提供个性化学习内容和练习。 ChatGPT:智能对话机器人,用于英语会话练习和对话模拟,提高交流能力。 对于 4 岁儿童练习英语口语: LingoDeer:通过游戏和互动活动教学,有家长仪表板可跟踪进度和设置目标。 Busuu:提供多种语言课程,有多种教学方法和社区功能。 Memrise:使用抽认卡和游戏教学,有社交功能可与亲友一起学习。 Rosetta Stone:采用沉浸式教学,有语音识别功能辅助发音练习。 Duolingo:免费的语言学习应用,游戏化学习方式保持孩子参与度。 对于想求职外企提升口语: Speak:AI 英语学习 APP,提供全面实时反馈和个性化学习体验。 Duolingo:游戏化学习平台,有口语练习功能。 Call Annie:可进行视频或语音英语对话,模拟真人交流。 使用这些工具时,建议结合实际对话练习,如参与语言交换、加入学习小组或与母语为英语的人交流,同时定期复习和持续实践以提高口语能力。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-15
请为我推荐适合中老年人学习的AI课程,并提供对应的链接
以下为适合中老年人学习的 AI 课程推荐: 课程名称:野菩萨的 AIGC 资深课 课程由工信部下属单位【人民邮电出版社】开设,是全网技术更新较快的课程之一。 课程内容丰富,涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。 预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影穿越的大门等内容。 核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程有 ChatGPT 基础、核心文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程涉及通识欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 您可以扫码添加菩萨老师助理,了解更多课程信息。希望这门课程能满足您的学习需求,助您在 AI 学习的道路上不断提升自己。
2024-11-15
如何系统性的学习如何使用ai
以下是关于如何系统性学习使用 AI 的建议: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI 的建议: 1. 从编程语言入手学习,比如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 的应用场景,也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,以及学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,比如参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2024-11-14