直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

可视化ai学习

回答

以下是关于您提到的“可视化 AI 学习”的相关内容:

在数学学习方面:

  1. 自适应学习系统:如 Khan Academy 结合 AI 技术,能提供个性化学习路径和练习题,精准推荐符合您能力和需求的内容。
  2. 智能题库和作业辅助:像 Photomath 利用图像识别和数学推理技术,为您提供数学问题的解答和解题步骤。
  3. 虚拟教学助手:例如 Socratic 借助 AI 技术,能解答数学问题、提供教学视频和答疑服务,助您理解和掌握知识。
  4. 交互式学习平台:参与如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。

关于 AI 的技术历史和发展方向以及当前最前沿的技术点:

  1. 大模型:如 GPT、PaLM 等。
  2. 多模态 AI:包括视觉-语言模型(CLIP、Stable Diffusion)、多模态融合。
  3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。
  4. 小样本学习:像元学习、一次学习、提示学习等。
  5. 可解释 AI:涵盖模型可解释性、因果推理、符号推理等。
  6. 机器人学:涉及强化学习、运动规划、人机交互等。
  7. 量子 AI:包含量子机器学习、量子神经网络等。
  8. AI 芯片和硬件加速。

关于接入 OpenAI 的视觉模型 GPT-4-V: GPT-4 Vision(通常缩写为 GPT-4V)是 OpenAI 高级模型 GPT-4 的创新功能,于 2023 年 9 月推出,能解释视觉内容和文本。它使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐,建立在复杂的深度学习算法之上,能有效处理复杂视觉数据。用户可以上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:如何用 AI 进行英语学习和数学学习

1.自适应学习系统:使用自适应学习系统(如Khan Academy)结合AI技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。1.智能题库和作业辅助:利用智能题库和作业辅助工具(如Photomath)通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。1.虚拟教学助手:使用虚拟教学助手(如Socratic)利用AI技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。1.交互式学习平台:参与交互式学习平台(如Wolfram Alpha)的数学学习课程和实践项目,利用AI技术进行数学建模和问题求解。通过结合AI技术和传统学习方法,您可以更高效、更个性化地进行英语学习和数学学习,并取得更好的学习效果。内容由AI大模型生成,请仔细甄别。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

问:怎么接入OpenAI 的视觉模型GPT4-V?

GPT-4 Vision,通常缩写为GPT-4V,是OpenAI高级模型GPT-4的一项创新功能。GPT-4V于2023年9月推出,使AI能够解释视觉内容和文本。GPT-4以其增强的视觉能力给人留下深刻印象,为用户提供更丰富、更直观的交互体验。GPT-4V模型使用带有预训练组件的视觉编码器进行视觉感知,将编码的视觉特征与语言模型对齐。GPT-4建立在复杂的深度学习算法之上,使其能够有效地处理复杂的视觉数据。有了这款具有视觉功能的GPT-4,您现在可以分析图像输入并开辟人工智能研发可能性的新世界。将图像功能整合到AI系统(尤其是大型语言模型)中,标志着AI的下一个前沿领域,为突破性应用解锁了新颖的界面和功能。这为与机器进行更直观、更类似人类的交互铺平了道路,标志着向全面理解文本和视觉数据迈出了一大步。简单来说,GPT-4V允许用户上传图像作为输入并询问有关图像的问题,这种任务类型称为视觉问答(VQA)。想象一下,与一个不仅会听你说什么,还会观察和分析你展示的图片的人交谈。这就是适合你的GPT-4V。

其他人在问
如果借助AI开启2周岁女儿的绘本启蒙之旅
对于借助 AI 开启 2 周岁女儿的绘本启蒙之旅,目前知识库中没有相关的直接内容。但以下是一些可能的建议: 首先,可以利用 AI 生成简单、有趣、色彩鲜艳的绘本故事,内容可以是关于小动物、日常生活中的常见事物等,以吸引孩子的注意力。 其次,通过语音交互的 AI 工具,为孩子朗读绘本故事,培养孩子的听力和语言感知能力。 还可以借助具有互动功能的 AI 应用,让孩子在观看绘本的过程中进行一些简单的操作,增强参与感。 希望这些建议能对您有所帮助。
2024-12-21
小白怎么学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,以下是一些关于 AI 技术原理的通俗易懂的内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是利用有标签的训练数据学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在学习的数据没有标签的情况下,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 中 Transformer 是关键,Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-21
AI选股
以下是为您提供的关于 AI 选股的相关信息: 1. 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:2024 年 3 月 13 日融资,融资金额 1.11 亿美元,轮次 A,主营 AI 药物发现和精准医疗。 Together AI:2024 年 3 月 13 日融资,融资金额 1.06 亿美元,轮次 A,估值 12 亿美元,主营 AI 基础设施和开源生成。 Glean:2024 年 2 月 27 日融资,融资金额 2.03 亿美元,轮次 D,估值 22 亿美元,主营 AI 驱动企业搜索。 Figure:2024 年 2 月 24 日融资,融资金额 6.75 亿美元,轮次 B,估值 27 亿美元,主营 AI 机器人。 Abridge:2024 年 2 月 23 日融资,融资金额 1.5 亿美元,轮次 C,估值 8.5 亿美元,主营 AI 医疗对话转录。 Recogni:2024 年 2 月 20 日融资,融资金额 1.02 亿美元,轮次 C,主营 AI 接口解决方案。 2. 2024 年 3 月科技变革与美股投资: AI 将引领新的服务模式,即“智能即服务”,重塑工作和生活,重新赋能芯片和云计算行业,创造新的投资机会,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。 企业竞争策略主要集中在迅速成长为大型模型公司并寻找强大背书,或保持小规模专注盈利并灵活应对市场变化。 2024 年将是大模型争霸的一年,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上受瞩目的公司。 3. 展望 2025,AI 行业的创新机会: 在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,为全球创作者和专业玩家设计创新的私有云产品,推出集成端侧 GPU 的旗舰产品——ZimaCube。 在 ToB 领域,AI 应用进入企业内部可从纵向的独立业务模块和横向的通用技能模块切入。2024 年 7 月,美国投资机构 A16z 发布文章探讨了人工智能在变革企业销售技术中的潜力,其中提到的多数产品符合上述特点。ToB 和 ToP 存在一定交集。
2024-12-21
openai 12天都有哪些内容
以下是 OpenAI 12 天相关的内容: 12 月 18 日: API 正式版:速度更快,成本降低 60%,支持视觉识别、函数调用、结构化输出等功能。 语音交互升级:引入 WebRTC 支持,12 行代码即可实现实时语音交互,音频处理费用降低 60%。 偏好微调功能:让 AI 回答更具个性化,企业 AI 准确率提升显著。 新增 Go 和 Java 工具包,简化 API 密钥申请流程。 12 月 12 日: 苹果设备深度集成 ChatGPT,可通过 Siri 实现文档总结、任务分配、节日创意等操作。 多平台无缝衔接:支持 iPhone、iPad 和 Mac,涵盖 Siri 集成、写作工具增强、视觉智能分析等多种应用场景。 实用场景:圣诞派对策划、PDF 总结、歌单生成、视觉智能评选毛衣创意等功能演示,体现全新交互体验。 12 月 5 日: OpenAI 近日宣布将举行为期 12 天的活动,期间每天直播展示新功能或工具。 DeepMind 发布了基础世界模型 Genie 2,可以通过一张图片生成可操作的 3D 环境,实现智能体的实时交互与行为预测。 真格基金投资副总裁 Monica 在其播客「OnBoard!」发布的最新一期对谈中,与在一线大模型机构有实际训练大语言模型(LLM)经验的研究员针对 OpenAI o1 模型进行了三个多小时的拆解与解读。强化学习如何给大语言模型带来新的逻辑推理能力?这种能力的来源、实现方式和未来潜力又是怎样的?o1 带来的「新范式」会对行业有怎样的影响?
2024-12-20
有没有能根据哼唱,出伴奏的AI
以下是一些能根据哼唱出伴奏的 AI 相关信息: 在音乐创作中,如果只有词和一小段自己哼唱的旋律,可以上传这段哼唱的旋律,让 AI 扩展出自己喜欢的风格,然后将这段音轨作为动机音轨继续创作。 对于已有简单录音小样,可以利用 REMIX 优化音质与编曲结构,并利用 AI 尝试不同曲风版本,找到最喜欢的风格,然后制作成核心音轨,进而完成全曲创作。 同时,在使用 AI 进行音乐相关处理时也存在一些问题和需要注意的地方: 检查乐谱时,主旋律基本能还原,但可能会把噪声识别成音符形成错误信息,需要具备乐理知识去修复。 重奏输出方面,修谱和重奏软件可以使用 中的 Muse Score,它支持多种常用音频编辑格式的导出和高清输出。 目前存在一些待解决的问题,如延长音部分可能会抢节奏,爵士乐中的临时升降号可能导致判断混乱,高音和低音的符点会相互影响,基础修谱可能导致旋律单调等。 在将 Midi 导出到 MP3 虚拟演奏文件时,可以直接导总谱或分轨导出,后期若想输出到某些音乐平台可能需要转码。还可以使用相关软件修改音色进行渲染。把文件丢给 AI 做二次创作时,可以根据具体情况选择完整小节或在中间掐断。
2024-12-20
2025年AI的大走向是什么
2025 年 AI 的大走向可能包括以下几个方面: 1. 大型基座模型能力的优化与提升:通过创新训练与推理技术,强化复杂推理和自我迭代能力,推动在科学研究、编程等高价值领域的应用,并围绕模型效率和运行成本进行优化,为广泛普及和商业化奠定基础。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,使系统能够理解和模拟三维环境,并融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展,提升对环境的感知与推理能力以及执行任务的实际操作能力,为人机交互带来更多可能。 3. AI 的多模态融合:整合文本、图像、音频、视频、3D 等多模态数据,生成式 AI 将显著提升内容生成的多样性与质量,为创意产业、教育、娱乐等领域创造全新应用场景。 4. 数字营销方面:AI 技术将成为数字营销的核心,品牌应注重利用 AI 提升用户体验,预计全球 AI 在数字营销领域的市场规模将达到 1260 亿美元,采用 AI 技术的公司在广告点击率上提高 35%,广告成本减少 20%。 5. 行业发展:2025 年或将成为 AI 技术逐渐成熟、应用落地取得阶段性成果的关键节点,同时成为 AI 产业链“资产负债表”逐步修复的年份,标志着行业从高投入、低产出向商业化路径优化迈出重要一步。 6. 竞争格局:大语言模型供应商将各具特色,竞争加剧;AI 搜索引擎将成为杀手级应用,快速普及,颠覆传统搜索方式;不同领域的 AI 搜索引擎将出现,针对专业需求提供更精准的信息服务。
2024-12-20
生成一张可视化图片
以下是关于生成可视化图片的相关知识: MJ 应用篇快速给 PPT 配图: 1. 复制图像链接:首先复制图片的网址,然后打开 discord,在聊天栏输入“/imagine prompt”。 2. 复制提示词:回到官网,把图像的提示词也复制下来,再回 discord 粘贴到刚才拷贝的网址后面,注意空个格。 3. 生成图像:输入命令,稍等一会儿就会得到一个内容和画风都和原图比较接近的图。如果效果不理想,多反复生成几次。 4. 改变比例和镜头拉远:放大觉得还不错的一张,点“Custom Zoom”,可以改变拉伸镜头后的画面比例,屏显 PPT 一般用 16:9,“zoom 参数”设置为 1.5 到 1.7 比较靠谱,太大(比如 2)可能会生成一些莫名其妙的东西。 5. 检查构图:选一张比较好的放大一下,就可以放进 PPT 调整构图。如果构图不太好,可以在当前这张图的基础上再用一次“Zoom Out 1.5x”。 Sora 原理解释: 以往的许多研究通过使用各种方法对视频数据进行生成建模,包括循环网络、生成对抗网络、自回归变换器和扩散模型。这些工作通常关注于视觉数据的狭窄类别、较短视频或固定大小的视频。Sora 是一个视觉数据的通用模型,它可以生成持续时间、纵横比和分辨率各异的视频和图像,长达一分钟的高清视频。 ComfyUI 的生图原理: 1. 条件引导:在去噪过程中,模型使用编码后的文本向量来引导图像生成,确保生成的图像与输入的文本描述相符。 2. 采样器:ComfyUI 提供了多种采样算法(如 Euler、DDIM、DPM++等)来控制去噪过程,不同的采样器可能会产生略微不同的结果或影响生成速度。 3. Vae 编码:VAE 是一种基于概率生成模型的框架,由编码器和解码器组成。编码器输入一幅图像,输出一个表示该图像特征的概率分布(通常是高斯分布,其均值和方差分别表示图像的特征);解码器接收一个随机采样的噪声向量(来自编码器输出的概率分布),通过一系列的卷积层和非线性激活函数,生成与输入图像相似的图像。 4. 结果输出:最终,ComfyUI 将生成的图像显示在界面上,用户可以保存、进一步编辑或用于其他目的。 5. 额外控制:ComfyUI 支持多种高级功能,如图像到图像(使用现有图像作为起点进行生成)、Lora(使用额外的小型模型来调整风格或内容)、ControlNet(允许用额外的图像来精确控制生成过程)、ipadapter(使用参考图像进行风格迁移生成)、放大和后处理(改善生成图像的质量和分辨率)。
2024-12-03
可视化图表生成?
以下是关于可视化图表生成的相关信息: 一泽 Eze 提出的“社交名片”思路拓展中,包含了 AI 图表生成,这波 AI 可视化输出的 Prompt 热度产生了更多丰富的二创玩法,如个人简历生成、文章内容的可视化总结、万物名片的概念解释、视频内容总结等。大模型的文本生成与可视化输出,提升了复杂、大段信息的呈现效果,基于 Claude Artifacts 不错的网页布局设计和样式实现能力,推动了设计、研发的民主化,可能会迎来一波 AI 创意图文、AI 图表、AI PPT、AI 产品原型等需求的 Promptbased 应用的新解法。 Anthropic Claude 平台新增了“数据分析”功能,支持对上传数据文件直接编写并运行 JavaScript 代码,从而完成复杂的数据处理和实时分析,并生成可视化图表。 Open AI 方面,上传相关文档(如 MD 格式、PDF 格式等)、数据等,它可以进行分析并生成可视化图表,但由于环境里没有中文字库所以中文显示可能会有问题,可上传中文字体尝试修复。还能生成流程图、思维导图之类的图表,但在处理数据分析问题时,时间描述需尽量精准,代码解释器的内容有时效性,复杂运算和大文件可能导致内存占满运行失败。
2024-12-03
文本可视化形成各种鱼骨图,逻辑图,时序图等等
以下是关于文本可视化形成各种鱼骨图、逻辑图、时序图等的相关内容: 生成流程图、时序图的方式主要有两种: 1. 可视化拖拽: 代表产品有:(web 工具)、visio(本地软件)。 优点:直观。 缺点:需要花时间在布局上。 2. 语法渲染成图形: 代表语法:。 优点: 只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,比如在用 tyora、markdown 写文档时。 多样性,不同渲染引擎可渲染成多种样式。 缺点:有点抽象。 使用 ChatGPT 生成图形语法的流程如下: 1. 确定制作目标。 2. 通过自然语法描述逻辑。 3. 在线校验测试是否成功。 在软件架构设计中,以下是一些可以用于绘制逻辑视图、功能视图和部署视图的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-11-25
AI如何可以将数据变得可视化
以下是关于 AI 如何将数据变得可视化的相关内容: 1. 在和 Cursor AI 一起学 Python 编程的课程中,第四节介绍了数据可视化与 AI 在语言教学中的应用。课程涵盖 45 分钟,包括数据可视化基础,如 Matplotlib、Seaborn 等绘图库,讲解了数据可视化在研究结果展示中的作用,简述了 AI 技术在语言教学中的应用,如智能批改、对话机器人等。实践实验包括可视化词频分析结果,使用 Matplotlib 绘制词频柱状图,解释图表并讨论其教学意义,还提供了简单的 AI 应用体验,如使用预训练模型对中文文本进行情感分析(视时间而定)。教学目标是能够使用 Python 对数据进行可视化展示,了解 AI 技术在语文教学中的潜在应用,并亲身体验简单的 AI 功能。大作业是和 Cursor 一起实现数据可视化。 2. 对于处理文档和数据,代码解释器可用于执行程序、运行数据分析等,并创建各种文件、网页甚至游戏。Claude 2 用于大型文档或同时处理多个文档,Bing 侧边栏用于较小的文档和网页。还制作了一个初始提示,以设置代码解释器来创建有用的数据可视化。 3. GPT4 Vision 模型能够分析数据可视化,以解释基础数据,并基于可视化提供关键见解。但在测试中仍存在一些错误,且需要人工参与来审查见解,不过该模型可以提高数据解释用例的生产力。
2024-10-27
哪个AI工具可以允许我上传数据,然后进行多种多样的数据可视化?
以下是一些可以允许您上传数据并进行多种多样数据可视化的 AI 工具: 1. GPT4 的代码解释器模式:您可以将文件上传到 AI,允许 AI 编写和运行代码,并下载 AI 提供的结果。它可用于执行程序、运行数据分析,创建各种文件、网页甚至游戏。您还可以设置代码解释器以创建有用的数据可视化。 2. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 3. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 4. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建模型。 5. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 6. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 7. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 8. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 9. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 10. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 11. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,ChatGPT 在数据分析领域也有应用,在个性化分析中可以处理假数据,包括游戏流水数据、产品数据、页面事件统计和用户行为数据等。但在实际业务中处理大量数据时,需要结合实际需求和场景审慎评估其适用性,并进行数据校验。
2024-09-29
智能表格分析、可视化的工具有哪些?
目前常见的用于智能表格分析和可视化的工具包括: 1. Microsoft Excel:功能强大,提供多种数据分析和可视化图表选项。 2. Tableau:专业的数据可视化工具,能够处理大规模数据并创建复杂的可视化效果。 3. Power BI:与微软生态系统紧密集成,具有丰富的可视化组件和数据分析功能。 4. Google Sheets:在线表格工具,支持基本的数据分析和可视化。 5. QlikView 和 Qlik Sense:提供交互式的数据探索和可视化功能。 这些工具各有特点,您可以根据具体需求和使用场景选择适合的工具。
2024-09-20
如何系统学习AI知识
以下是系统学习 AI 知识的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI,还可以: 1. 了解基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,可根据兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后通过实践巩固知识,尝试使用各种产品并分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2024-12-20
AI绘画这么厉害了,那儿童还有必要学习素描课吗
即便 AI 绘画很厉害,儿童仍有必要学习素描课。手绘素描笔记有助于建立突触连接,将信息从短期记忆转化为长期记忆,让人成为更好的概念思考者。例如,在科学观察中,学生通过手绘能更好地学会观察,这个过程不可被替代。就学习而言,掌握新技能时应先进行动手、动脑、技术最小化的学习,不应一开始就依赖 AI。比如在记笔记时,手写比打字能让学生记住更多信息。此外,在一些课程设计中,如离谱村的 AI 课,通过巧妙的环节设置和老师的引导,能让孩子更好地学习和发挥想象。
2024-12-20
如何从零学习
以下是从零学习 AI 的步骤和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果您想系统学习 Stable Diffusion 的提示词,可以参考以下步骤: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。
2024-12-20
学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等 AI 生成工具。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-20
AI基础学习课程
以下是为新手提供的 AI 基础学习课程相关内容: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 实践和尝试:理论学习后,实践是巩固知识的关键,可尝试使用各种产品创作作品,知识库中有很多实践后的作品和文章分享。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,还有以下具体的课程推荐: 【野菩萨】课程:预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。若想免费获得该课程,可参与 video battle,每期冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。扫码添加菩萨老师助理可了解更多课程信息。 微软 AI 初学者入门课程:包括特定的机器学习云框架,如了解更多详情。深度学习背后的深层数学(Deep Mathematics)可参考 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合著的《深度学习》(Deep Learning)一书,该书可在 https://www.deeplearningbook.org/上获取。
2024-12-19