直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何学会向AI提问

回答

以下是关于如何学会向 AI 提问的一些要点:

  1. 格式方面:采用【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】的方式。例如,律师处理交通事故案件时可提问:“给你一则交通事故案件事实 xxx,根据 xxx 法规,x 方的责任应如何划分?”
  2. 提高回答准确性:使用清晰、具体的语言,避免模糊表述。了解 AI 的工作原理和限制,以便更好地设计问题,获得有用答案。
  3. 工作流程拆解:在应用 AI 前,将复杂任务分解为更小、更具体的环节,使 AI 能更精确执行。
  4. 清晰表达:像在给孩子们举例时,要把细节说清楚,比如让兔龟站起来的例子。
  5. 对话迭代:用 YES-AND 的方法和 AI 对话,在过程中把自己的偏好告诉它。
  6. 保持判断:AI 可能会胡说八道,不能无脑依赖,面对答案要多思考其正确性。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

潘帅:手把手分享法律人如何用好AI — Prompt篇

格式=【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】4.Prompt技巧讲清楚背景和目的在向AI提问时,除了明确的问题描述,对于背景信息和提问的目的最好梳理清楚,这样可以帮助AI更好地理解问题的上下文,从而提高回答的准确性。例如,律师在处理一起交通事故案件时,可以询问:“给你一则交通事故案件事实xxx,根据xxx法规,x方的责任应如何划分?”学会提问,如何提高回答内容的准确性提出好问题是提高AI回答准确性的关键。这包括使用清晰、具体的语言,避免模糊不清的表述。同时,了解AI的工作原理和限制也很重要,这样你可以更好地设计问题,使其能够提供有用的答案。拆解环节、切分流程、具体落到某个工作细节在应用AI之前,首先要对工作流程进行细致的拆解。这意味着将复杂的任务分解成更小、更具体的环节,以便AI可以更精确地执行。

python安装FittenAI编程助手

通过点击左上角工具栏中的Fitten Code –开始新对话打开对话窗口进行对话

一堂超好玩儿的离谱村 AI 课以及后续开源共创预告

短短45分钟的课堂,要传达的最重要的信息是人机协作。要清晰表达、给具体描述兔龟是再好不过的例子,简单对比,孩子们立刻知道了绘图提示词的要点——离谱村的画师有点笨,得把细节说清楚、它才能想象得出才能画得出。这一个例子后,我为了教垫图技巧,给出让兔龟站起来却失败的例子。萌娃们七嘴八舌“像人一样站立”、“直立着”、“要侧身像”……表达能力真不错。要用YES-AND的方法和AI对话迭代不管是和AI脑洞机一起设计新生物,还是写歌词,孩子们边高高举手边嚷嚷着把希望AI改进的部分说出来。AI很厉害但并不了解你,你需要在和AI对话的过程中把自己的偏好告诉它,这是孩子们通过几次迭代能学会的道理。(可惜几百人的讲座里只能灌输,如果能小课堂自己动手会更好。)要有自己的判断AI可能会胡说八道,因此人类不能无脑依赖AI。面对AI给的答案多想想“它说得对吗”,多看看“靠谱信息核查员”回答中的相关参考文章、再质疑几句,避免被爱做梦的AI带沟里去。改良版荔枝瓢虫的故事让高年级课堂的孩子们记住人类得有自己的判断。

其他人在问
我想学习ai做副业赚钱,应该怎么做?
学习 AI 做副业赚钱可以参考以下步骤: 1. 基础学习: 了解 AI 基本概念,阅读「」部分,熟悉术语和基础概念,包括人工智能的主要分支及它们之间的联系,浏览入门文章了解其历史、应用和发展趋势。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并争取获得证书。 2. 深入学习: 根据兴趣选择特定模块深入学习,比如图像、音乐、视频等领域。 掌握提示词技巧,因其上手容易且实用。 3. 实践尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 4. 体验产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解工作原理和交互方式,获得实际应用中的第一手体验,激发对 AI 潜力的认识。 需要注意的是,学了 AI 有可能赚钱,但不保证每个人都能赚到钱。人工智能领域有很多高薪工作,如数据科学家、机器学习工程师等,学会 AI 技术可增加在这些岗位就业及职业发展的可能性。然而,能否赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素。仅仅学会基础知识可能不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2024-11-21
给建筑穿毛衣效果的AI有哪些?
以下是一些可以实现给建筑穿毛衣效果的方法: 可以使用 Stable Diffusion(SD)或者 liblib 平台。 步骤一:选择合适的 AI 模型。 选择适合建筑室外的大型模型——“元技能Yuan_SDXL_0.2建筑室外大模型”。您可以通过以下链接获取模型: 建筑室外 XL 大模型:https://www.liblib.art/modelinfo/464d8c676d944ee4bc7f6b6830a801e1?from=search&versionUuid=c52f1cdadcc34b978664baff71c90b39 以我的家乡开原老城的城门为例,我们将通过以上步骤,为这座古老的城门穿上一件毛线编织的外衣。
2024-11-21
ai诈骗法律法规
目前关于 AI 诈骗的法律法规方面,有以下相关信息: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 在英国,产品安全法律确保在英国制造和投放市场的商品是安全的。特定产品的立法(如电气和电子设备、医疗设备和玩具)可能适用于某些包含集成 AI 的产品。消费者权利法可能在消费者签订基于 AI 的产品和服务销售合同时保护消费者。侵权法提供了一个补充制度,在民事过错造成损害时可能提供赔偿。但目前尚不清楚消费者权利法在包含集成 AI 的产品或基于服务的背景下是否能提供适当水平的保护。
2024-11-21
ai诈骗防范措施和技术手段
以下是关于 AI 诈骗防范的一些措施和技术手段: 1. 政府层面: 拜登签署的 AI 行政命令要求,开发最强大 AI 系统的开发者需向美国政府分享安全测试结果和其他关键信息。对于可能对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。 商务部将制定内容认证和水印的指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具,为公众识别官方内容提供便利,并为私营部门和全球各国政府树立榜样。 2. 技术层面: 国家技术标准研究所将制定严格的标准进行广泛的红队测试,以确保在公开发布前的安全性。 国土安全部将把这些标准应用于关键基础设施部门,并建立 AI 安全和安保委员会。能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。 3. 企业层面: 360 立志解决大模型的安全问题,将大模型的安全问题分为三类进行研究。 在个人层面,要提高对 AI 诈骗的警惕性,不轻易相信来源不明的信息,学会识别可能的 AI 生成的虚假内容。
2024-11-21
ai诈骗成功案件
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。相关部门将制定标准、工具和测试以确保 AI 系统安全可靠,还将通过制定新标准来防范利用 AI 制造危险生物材料的风险,以及通过建立标准和最佳实践来保护美国人免受 AI 导致的欺诈和欺骗,如商务部将为内容认证和水印制定指导,以明确标记 AI 生成的内容。 关于 AI 相关的监管协调,将支持企业对 AI 创新进行有信心的投资并减少不确定性。行业要求进一步的系统协调以明确谁负责解决跨领域的 AI 风险并避免多个监管机构的重复要求。例如“AI 公平保险有限公司”设计新的 AI 驱动算法来设定保险费价格,其使用 AI 设定价格可能受到包括数据保护、平等和一般消费者保护法等一系列法律框架以及部门规则的约束。
2024-11-21
ai诈骗案例
以下为您提供一些与 AI 相关的内容: 在法律领域,AI 可用于模拟不同辩护策略下的量刑结果,例如针对商业贿赂、网络诈骗等刑事案件,还能为商业合同纠纷等案件设计诉讼策略。 拜登签署的 AI 行政命令要求强大 AI 系统的开发者向美国政府分享安全测试结果等关键信息,制定确保 AI 系统安全可靠的标准、工具和测试,保护免受利用 AI 制造危险生物材料的风险,以及建立标准和最佳实践以防范 AI 导致的欺诈和欺骗。 在探讨 AI 幻觉方面,介绍了幻觉与错误的区别,包括性质、表现形式和原因等,并通过具体案例如翻译和推理问题进行说明。
2024-11-21
我想根据提问的问题关键词设置自动回复
以下是关于根据提问的问题关键词设置自动回复的相关内容: Apple Intelligence 中各种智能应用的提示词已曝光,存在“/System/Library/AssetsV2/com_apple_MobileAsset_UAF_FM_GenerativeModels”目录下。作为邮件助理,可识别邮件中的相关问题并提供简短回复片段,以 JSON 格式呈现输出,包含问题和答案的字典列表。若邮件无提问则返回空列表。 安仔:Coze AI 机器人对接微信群的疑问解答,包括放行端口、Bot ID、微信账号被封、服务器是否需一直开着、不懂编程能否配置好、配置中遇到问题、为何配置多个前缀触发回复等问题及相应答案。 飞书 5000 人大群内置智能机器人“waytoAGI 知识库智能问答”,基于飞书 aily 搭建。使用时在群里发起话题时,它能自动问答、知识搜索、文档引用、互动教学、更新最新动态、促进社区互动、资源共享、支持多语言问答。
2024-11-18
关于kimi提问播客的提示词
以下是关于 Kimi 的相关提示词信息: 对于 Kimi Copilot 网页总结助手插件: 提示词包括:“你是一个擅长总结长文本的助手,能够总结用户给出的文本,并生成摘要。” 工作流程为:“让我们一步一步思考,阅读我提供的内容,并做出以下操作:一句话总结这篇文章,标题为‘概述’;总结文章内容并写成摘要,标题为‘摘要’;总是用中文回答;当你输出标题时,应该使用 markdown 格式。文章链接:https:// 。如果你无法访问这个链接,请根据下面的文本内容回答。” 文末的 ZIP 格式插件可能可以自定义提示词。 对于 Kimi chat: 输入 prompt 后很简洁。输入起诉状后,前面的回答温馨且专业,但存在一些问题,如主体缺少答辩人、引用废止的《合同法》等,总体能达到及格往上的成绩。输入应诉方案后,整体简洁明了但需继续细化,答辩策略对应答辩状,庭审准备和风险控制较抽象。 与智谱清言对比,智谱清言输入起诉状后的输出在主体等方面有其特点,输入“请输出应诉方案”后的输出在准备工作等方面表现良好。
2024-11-16
我已经写出了一段提示词,在向AI工具提问时,如何向其发问
以下是关于向 AI 工具发问的一些方法和要点: 1. 逻辑思维推理能力比提示词更重要。 2. 提问时需要包含固定要素,如思考问题所需的前置信息、主要解决的主客体及关系、对回答的要求、有无类似问题的参考样例,并编辑问题模板,如相似问题的问题与答案(不一定需要)+问题主体+前置条件+回答要求。 3. 学会使用追问技巧,如 StepBack Prompting,提问者应知道如何追问,例如对“巴以冲突的原因,要求从地理、历史和参与方几个方面进行分析和回答”,然后根据回答进一步追问。 4. 可以运用举例法,举个例子让 AI 模仿写,并变更主题。 5. 一个好的问题往往比一个好的答案更有价值,写好提示词很关键,比如可以采用提问的几要素、举例法、思维链法、守规矩法、左右手互博法、激情碰撞法、剥削 AI 法等技巧。
2024-11-13
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。并且得到的结果必须与原文所表达的内容不出现差错,翻译结果读起来流畅自然
很抱歉,知识库中的内容没有直接针对您如何翻译日漫以获得更自然流畅且准确结果的相关指导。但一般来说,要实现这样的翻译效果,您可以从以下几个方面考虑: 1. 深入理解日漫的文化背景、角色性格和情节发展,以便更好地把握原文的“意”。 2. 注重上下文的连贯和逻辑,不仅仅是逐句翻译,而是从整体上把握语义。 3. 避免过于拘泥于原文的句式和词汇,灵活运用目标语言的表达方式。 4. 多参考优秀的日漫翻译作品,学习他人的翻译技巧和风格。 5. 对于一些特定的文化元素或术语,要进行适当的解释或转换,以确保目标读者能够理解。
2024-10-27
我想翻译一些日漫,我该如何提问才可以让得到的翻译结果更接近正常人说话,而不是简单的直译。还有当翻译时ai遇到比较敏感的话题通常会拒绝回答或者委婉的回答,我不想这样,
在让 AI 翻译日漫时,如果您希望得到更接近正常人说话的翻译结果,而非简单的直译,您可以这样提问:“请以符合自然语言表达习惯和逻辑的方式,为我翻译这段日漫内容,注重语言的流畅性和生动性,避免生硬的直译。” 关于 AI 遇到敏感话题可能拒绝回答或委婉回答的情况,如果您不想这样,需要注意的是,AI 遵循一定的道德和法律规范,对于确实不适合或不被允许处理的敏感内容,强制要求其回答是不可取且不恰当的。但如果您认为某些话题并非真正敏感,只是被误判,您可以尝试更清晰准确地描述相关内容,以减少误解的可能性。
2024-10-27
0基础怎么快速学会做AI
对于 0 基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,您还可以参考以下具体的学习活动: 1. 参加“AI 编程共学”活动,例如: 10 月 28 日 20:00 开始的“0 基础做小游戏分享:通往 AGI 之路增量小游戏、转生之我是野菩萨”,回放链接:。 10 月 29 日 20:00 开始的“0 编程基础入门 Cursor 极简使用指南”,回放链接:。 10 月 30 日 20:00 开始的“0 基础学做 AI 拍立得:Coze 工作流实现手把手教学、AI 拍立得开源代码开箱即用”,回放链接:。 10 月 31 日 20:00 开始的“0 基础做小游戏分享:猪猪🐷撞南墙”,回放链接:。 2. 对于技术纯小白,您可以: 从一个最最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助您梳理出产品需求文档。
2024-11-12
如何学会ollma dify
以下是关于学习 Ollama 的详细步骤: 1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。 2. 安装 Ollama : 官方下载地址:https://ollama.com/download 。 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。 3. 启动 Ollama : 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 5. 使用 Ollama 运行本地大模型: 安装完成 ollama 后,在命令行中运行相应命令。 可通过查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
2024-11-06
帮我写一段200字的英文,回答这个问题:学会开车这个新技能的好处
Learning to drive has numerous benefits. Firstly, it offers greater independence and flexibility in your daily life. You can travel wherever and whenever you want without relying on public transportation or others. Secondly, it saves time as you can avoid waiting for buses or trains. Moreover, it expands your job opportunities as some positions require a driving license. Driving also enables you to take spontaneous trips and explore new places, enhancing your quality of life and providing more freedom and convenience.
2024-11-04
我如何学会AI应用
要学会 AI 应用,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 学习 Python 编程: 至少熟悉以下内容: Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 希望以上内容对您有所帮助。
2024-10-16
怎样学会使用ai
以下是关于如何学会使用 AI 的全面指导: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、用 AI 学习一门外语 1. 设定目标:明确学习目标和时间表,分阶段完成学习任务。 2. 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 3. 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 七、AI 与宠物结合 以下是关于 AI 与宠物结合的一些例子和学习路径: 1. AI 宠物助手 基于自然语言处理和计算机视觉的 AI 宠物助手,可以帮助主人更好地照顾宠物。 例如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 2. AI 宠物互动玩具 利用 AI 技术开发的智能互动玩具,可以增强宠物的娱乐体验。 例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 3. AI 宠物图像生成 使用生成式 AI 模型,可以根据文字描述生成各种宠物形象的图像。 这可以帮助宠物主人定制个性化的宠物形象。 4. AI 宠物医疗诊断 利用计算机视觉和机器学习技术,可以开发 AI 辅助的宠物医疗诊断系统。 通过分析宠物的症状图像和病历数据,提供初步诊断建议。 5. AI 宠物行为分析 基于传感器数据和计算机视觉,可以利用 AI 技术分析宠物的行为模式。 帮助主人更好地了解宠物的需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI+宠物是一个充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可以开发出各种有趣有用的应用。 请注意,以上部分内容由 AI 大模型生成,请仔细甄别。
2024-10-09
学会了工作流,怎么变现
以下是关于学会 AI 工作流如何变现的相关内容: AI 工作流就像是一个可视化的拼图游戏,由很多个小块块(节点)组成,这些小块块可以是大语言模型 LLM、自己写的代码、做判断的逻辑等。工作流能将插件、大语言模型、代码块等功能组合在一起,创造出复杂但稳定的业务流程。当面对多步骤且对结果要求严格的任务时,工作流最为合适。 那些熟练掌握 AI 工作流的人,能在原有的工作流程中及时更新工具,应用 GPT5 等强大的能力,实现效率的指数级提升。而未学习 AI 工作流的人会落后,形成强者越强、弱者越弱的马太效应。 通过学会调用外部不同类型 API 来获取模型缺少的额外信息、代码执行能力、访问专有信息源等,比如获取实时天气、联网搜索等。Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,它将复杂任务分解为较小步骤,融入更多人类参与的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能,更丰富、更精确。 变现方面,您可以利用工作流提升工作效率,为自己的工作创造更多价值,从而获得更高的收益。例如在一些需要高效处理复杂任务的工作中,凭借高效的工作流获得更多业务机会或更高的薪酬。或者利用工作流开发创新的产品或服务,满足市场需求,实现商业价值。
2024-08-09