直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

多模态搜索工具

回答

以下是为您介绍的多模态搜索工具:

  • 推荐的 AI 搜索引擎:
    • 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,提升用户搜索效率和体验。
    • Perplexity:聊天机器人式搜索引擎,允许自然语言提问,用生成式 AI 技术收集信息并给出答案。
    • 360AI 搜索:360 公司推出,通过 AI 分析问题生成答案,支持增强模式和智能排序。
    • 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来支持图像、语音等多模态搜索。
    • Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。
    • Devv:面向程序员的 AI 搜索引擎,提供编程等领域专业建议和指导。
    • Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。
  • 关于提升 AI 搜索准确度和多模态检索:
    • 提升准确度的方法:通过提示词请求大模型以思维导图形式输出答案,通过提示词请求大模型做 Function Calling 判断使用的 Agents。提示词工程是系统学科,需大量调试设计适合业务的提示词。
    • 多模态检索:是提升信息密度的重要措施,随着 5G 发展,互联网信息多元化,图片/视频/音频比重增大。多模态检索要获取不同形式信息聚合参考,实现困难,涉及海量信息源处理和识别,现阶段可基于谷歌搜索,先使用其图片/视频检索 API 拿到匹配内容,再通过 OCR 图片识别/音视频转录等方法获取文本内容。
  • ThinkAny 的相关情况:
    • 冷启动:未提及具体冷启动方式。
    • 产品特性:
      • 部署方案:当前线上服务采用 Vercel + Supabase 的云平台部署,后续将迁移至基于 AWS 搭建的 K8S 集群,以提升服务稳定性和动态扩容表现。
      • 功能创新:支持 Search / Chat / Summarize 三种模式,对应检索问答/大模型对话/网页摘要三种使用场景;集成包括 Llama 3 70B / Claude 3 Opus / GPT-4 Turbo 在内的 10+大语言模型;支持检索链接/图片/视频等模态内容;支持以对话/大纲/思维导图/时间线等形式输出搜索问答内容;支持检索 Google / Wikipedia / Github 等信息源的内容,作为搜索问答的挂载上下文。此外,还开源了一个 API 项目 rag-search,实现联网检索功能,并对检索结果进行重排和获取详情内容,得到准确度不错的检索结果。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:AI 搜索引擎

以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。1.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。1.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。1.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。1.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。1.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。1.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别

工具:我做了一个 AI 搜索引擎

通过提示词请求大模型以思维导图的形式输出答案通过提示词请求大模型做Function Calling判断使用的Agents提示词工程是一个很系统的学科,有实操指南,有方法论。不能一招通吃,只有经过大量调试,才能设计出一套适合自身业务的提示词。1.多模态检索Multi Mode提升AI搜索的关键步骤是保证检索到的信息密度。只拿信息源检索返回的摘要内容肯定不够,前面我们也提到了要并行获取多个链接的详情内容。多模态检索是提升信息密度的一个重要措施。随着5G的发展,互联网上的信息越来越多元化,图片/视频/音频占了很大的比重。多模态检索就是为了尽可能多的获取不同形式的信息,再聚合起来作为引用参考。多模态检索的实现是非常困难的。涉及到海量信息源的处理和识别。现阶段可以在谷歌搜索的基础上完成多模态检索的需求。第一步我们可以使用谷歌的图片/视频检索API,拿到跟query匹配的图片/视频内容。第二步要做的工作是通过OCR图片识别/音视频转录等方法,拿到多模态信息的文本内容。

工具:我做了一个 AI 搜索引擎

ThinkAny当前的线上服务采用的是Vercel + Supabase的云平台部署方案。用户量和数据量起来之后也有会比较大的性能瓶颈,目前也在基于AWS搭建自己的K8S集群,后续迁移过来,在服务稳定性和动态扩容方面会有更好的表现。除了以上三个核心问题之外,ThinkAny五月初发布的第二个大版本,在功能差异化方面做了很多创新。1.多模式使用Multi-Usage-Mode支持Search / Chat / Summarize三种模式,对应检索问答/大模型对话/网页摘要三种使用场景。202406191635071.多模型对话Multi-Chat-Model集成了包括Llama 3 70B / Claude 3 Opus / GPT-4 Turbo在内的10+大语言模型。1.多模态检索Multi-Mode-Search支持检索链接/图片/视频等模态内容1.多维度输出Multi-Form-Output支持以对话/大纲/思维导图/时间线等形式输出搜索问答内容。202406251501281.多信源检索Multi-Retrieve-Source支持检索Google / Wikipedia / Github等信息源的内容,作为搜索问答的挂载上下文。另外,ThinkAny还开源了一个API项目:rag-search,完整实现了联网检索功能,并对检索结果进行重排(Reranking)/获取详情内容(Read Content),最终得到一份准确度还不错的检索结果。

其他人在问
多模态大模型
以下是关于多模态大模型的相关信息: Google 的多模态大模型叫 Gemini,是由 Google DeepMind 团队开发的。它不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 多模态大模型(MLLM)是一种在统一的框架下,集成了多种不同类型数据处理能力的深度学习模型,这些数据可以包括文本、图像、音频和视频等。通过整合这些多样化的数据,MLLM 能够更全面地理解和解释现实世界中的复杂信息,在面对复杂任务时表现出更高的准确性和鲁棒性。其典型架构包括一个编码器、一个连接器和一个 LLM,还可选择性地在 LLM 上附加一个生成器,以生成除文本之外的更多模态。连接器大致可分为基于投影的、基于查询的和基于融合的三类。 有基于多模态大模型给现实世界加一本说明书的应用,例如将手机置于车载摄像机位置,能够实时分析当前地区今年新春的最新流行趋势。在这种架构中,后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入,整体设计以简单高效为主。下载模型 ggml_llavav1.513b,这里选择是 13b 4bit 的模型。BakLLaVA 推理速度更快,但对中文的支持较差,7b 的模型在语义理解方面普遍存在不足,特别是在需要规范数据格式进行交互的场合。对于 function call 和 action 操作,极度依赖模型的 AGI 能力。
2024-11-18
clip模型能应用与跨模态检索
CLIP 模型能应用于跨模态检索。以下是关于 CLIP 模型的一些详细信息: 对比语言图像预训练(CLIP)通过将图像和文本转换成固定大小的向量,使它们在一个共同的嵌入空间中对齐来训练模型,对于多模态信息检索和相关任务非常重要。 在 Stable Diffusion 中,CLIP 模型作为文生图模型的文本编码模块,决定了语义信息的优良程度,影响图片生成的多样性和可控性。它包含 Text Encoder 和 Image Encoder 两个模型,分别用于提取文本和图像的特征,可灵活切换,且具有强大的 zeroshot 分类能力。其庞大的图片与标签文本数据的预训练赋予了其强大的能力,把自然语言领域的抽象概念带到了计算机视觉领域。 自 2021 年以来,多模态模型成为热门议题,CLIP 作为开创性的视觉语言模型,将 Transformer 架构与视觉元素相结合,便于在大量文本和图像数据集上进行训练,可在多模态生成框架内充当图像编码器。 为解决 CLIP 模型在仅文本任务中表现不如专门用于文本的模型,导致信息检索系统处理仅文本和多模态任务时效率低下的问题,已提出新颖的多任务对比训练方法训练相关模型,使其在文本图像和文本文本检索任务中达到最先进性能。
2024-10-31
多模态AI是什么,和深度学习的关系
多模态 AI 是指能够处理和生成多种数据类型(如文本、图像、音频、视频等)交互的人工智能技术,从而能够提供更接近人类感知的场景。 多模态 AI 与深度学习有着密切的关系。在深度学习时期,深度神经网络等技术的发展为多模态 AI 提供了基础。当前,多模态 AI 是 AI 领域的前沿技术之一。 多模态 AI 具有以下特点和应用: 1. 能够无缝地处理和生成多种音频或视觉格式的内容,将交互扩展到超越语言的领域。 2. 像 GPT4、Character.AI 和 Meta 的 ImageBind 等模型已经能够处理和生成图像、音频等模态,但能力还比较基础,不过进展迅速。 3. 多模态模型可以为消费者提供更加引人入胜、连贯和全面的体验,使用户能够超越聊天界面进行互动。 4. 多模态与工具使用密切相关,能够使用设计给人类使用但没有自定义集成的工具。 5. 从长远来看,多模态(特别是与计算机视觉的集成)可以通过机器人、自动驾驶车辆等应用程序,将大语言模型扩展到物理现实中。
2024-10-28
使用多模态提取图片中的表格信息
以下是关于多模态提取图片中表格信息的相关内容: 在多模态任务和评测方法方面,有以下任务及相关信息: |任务名称|简称|数据集名称|数据集大小|指标计算| |||||| |Video Action Recognition|VAR|UCF101|101 类共 13K 个视频片段|Accuracy| |||HMDB51|51 类共 7K 个视频片段|Accuracy| |||Moments in Time|339 类共 1M 个视频片段|Accuracy| |||Kinetics400|400 类且每类 400 个视频片段|Accuracy| |||Kinetics600|600 类且每类 600 个视频片段|Accuracy| |||Kinetics700|700 类且每类 700 个视频片段|Accuracy| |Image Text Retrival|Retrival 任务|Flickr30K|31K 张图片,155K 文字描述|R@1| |||MSCOCO|113K 张图片,567K 文字描述|R@1| |Image Caption|Caption 任务|Visual Genome|108K 图片,5.41M 文字描述|CIDEr| |||CC3M|3.01M 对图片和文字描述|CIDEr| |||SBU|867K 对图片和文字描述|CIDEr| |||LAION400M|400M 图片|CIDEr| |Visual QA|VQA|VQAv2|265K 张图片|Accuracy| |||VisDial|130K 图片|Accuracy| Gemini 模型本身是多模态的,展示了无缝结合跨模态能力,例如从表格、图表或图形中提取信息和空间布局,以及语言模型的强大推理能力。 GPT4V 在视觉编码能力方面,图 46 进一步展示了其将输入图像中的表格重构为 MarkDown/LaTex 代码。
2024-09-20
多模态大模型
Google 的多模态大模型叫 Gemini,是由 Google DeepMind 团队开发的。它不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 以下是 26 个多模态大模型的部分介绍: XLLM 陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用 QFormer 的语言可迁移性,XLLM 成功应用于汉藏语境。 VideoChat 开创了一种高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。 InstructBLIP 基于预训练的 BLIP2 模型进行训练,在 MM IT 期间仅更新 QFormer。通过引入指令感知的视觉特征提取和相应的指令,该模型使得能够提取灵活多样的特征。 PandaGPT 是一种开创性的通用模型,能够理解 6 不同模式的指令并根据指令采取行动:文本、图像/视频、音频、热、深度和惯性测量单位。 PaLIX 使用混合 VL 目标和单峰目标进行训练,包括前缀完成和屏蔽令牌完成。事实证明,这种方法对于下游任务结果和在微调设置中实现帕累托前沿都是有效的。 VideoLLaMA 张引入了多分支跨模式 PT 框架,使 LLMs 能够在与人类对话的同时同时处理给定视频的视觉和音频内容。该框架使视觉与语言以及音频与语言保持一致。 随着 ChatGPT 的蓬勃发展,大型模型正深刻地影响着各个行业。多模态技术作为行业前沿突飞猛进,呈现出一统计算机视觉(CV)和自然语言处理(NLP)的势头。有一款基于多模态大型模型的应用能够迅速解释现实世界,将手机置于车载摄像机位置,能实时分析当前地区今年新春的最新流行趋势。该应用后端采用 llama.cpp 挂载 LLaVA 模型,为应用提供推理服务。同时,部署了一个 Flask 应用用于数据前处理和后处理,提供 Stream 流服务。前端页面采用 HTML5,用于采集画面和用户输入,整体设计以简单高效为主。
2024-09-13
目前有哪些模型有多模态功能
目前具有多模态功能的模型主要有以下几种: 1. GPT4:能够处理和生成图像、音频等多种模态,但这方面能力还处于基础阶段。 2. Character.AI:具备多模态处理和生成能力。 3. Meta 的 ImageBind:可以处理和生成多种模态。 4. 智谱·AI 推出的多模态模型: Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。 CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型(VLM),基于对视觉和语言信息之间融合的理解,能实现视觉语言特征的深度融合,是目前多模态权威学术榜单上综合成绩第一的模型,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。
2024-09-01
生成式搜索和知识问答的区别
生成式搜索和知识问答存在以下区别: 生成式搜索: 采用大型语言模型技术,能更好地理解用户自然语言查询的语义,不仅仅是匹配关键词。 可以生成通顺的自然语言回答,而非简单返回网页链接和片段,结果更易于理解和使用。 能够根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。 例如 Perplexity 等 AI 搜索引擎,通过收集各种来源的信息给出答案。 但存在训练成本高、可解释性差、潜在偏差和不当内容等问题。 知识问答: 例如 RAG ,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。 原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。 一些知识问答系统能够支持在本地运行。 此外,为您推荐一些 AI 搜索引擎: 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。 Perplexity:聊天机器人式搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术收集信息并给出答案。 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。 Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-14
我没有知识库,如何让AI就某一问题穷尽搜索
要让 AI 就某一问题进行穷尽搜索,一般会涉及以下步骤: 1. 文档向量化:知识库中的文档需要被转换成向量形式,以便在数值级别上与问题向量进行比较。使用知识库工具上传文档时,会完成文档的向量化,这依靠 Embedding Model 实现。 2. 知识库检索: 相似性计算:使用相似性度量方法(如余弦相似性)计算问题向量和各个文档向量之间的相似度,以找出与问题内容最接近的文档。 排序与选择:根据相似性得分对所有文档进行排序,通常会选择得分最高的几个文档,认为这些文档与问题最相关。 信息抽取:从选定的高相关性文档中抽取具体的信息片段或答案,可能涉及进一步的文本处理技术,如命名实体识别、关键短语提取等。 3. 信息整合阶段:将检索到的全部信息连同用户问题和系统预设整合成一个全新的上下文环境,为生成回答提供基础。 此外,像生物进化中通过自然选择的方式,从特定规则开始逐步改变(可能随机),在每一步保留最有效的规则并丢弃其他,这种方法不是我们通常定义的“人工智能”(更像是“遗传算法”),但在高维规则空间中往往比低维规则空间效果更好,因为维度越多,陷入局部最小值的可能性越小。 同时,给 AI 配备随时更新的“活字典”即知识库是一个好方法。知识库就像 AI 随时可查阅的百科全书,当 AI 遇到不确定问题时,可从知识库中检索相关信息给出更准确回答。比如建立包含最新新闻、科技发展、法律法规等内容的知识库,或者利用整个互联网的实时数据作为知识库,通过搜索引擎获取最新信息。
2024-11-13
我想搜索全面彻底的搜索某方面客观存在的事实信息,有什么工具可以实现
以下是一些可以用于全面彻底搜索某方面客观存在的事实信息的工具和相关信息: Coze 手搓的极简版 Perplexity:它旨在结合搜索引擎和 LLM 的优势,提供更优的信息检索体验。但 LLM 本身作为知识问答工具存在缺陷,如无法实时获取最新信息、有“幻觉”问题、无法给出准确引用来源等,而搜索引擎返回的信息呈现形式原始,需要进一步处理。 基于嵌入的搜索:OpenAI 提出,如果作为输入的一部分提供,模型可以利用外部信息源,例如通过嵌入实现高效的知识检索。文本嵌入是衡量文本字符串相关性的向量,相似或相关的字符串距离更近,利用快速向量搜索算法,可将文本语料库分割成块进行嵌入和存储,给定查询后进行向量搜索找到最相关的文本块。相关示例实现可在中找到。关于如何使用知识检索来最小化模型编造错误事实的可能性,可参阅策略“指示模型使用检索到的知识来回答查询”。
2024-11-13
用20个字概括AI问答和搜索
AI 问答和搜索包括联网检索、多种引擎及检索原理 存在联网检索的 AI 及相关工具。 推荐多种 AI 搜索引擎。 介绍知识库检索的原理和步骤。
2024-11-13
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
请根据提供的AI工具网址,搜索常用的AI工具,实际操作AI工具,记录使用过程中的感受和发现,提交一份体验报告,描述工具的使用过程和个人感受,并就AI相关的热点话题,AI伦理、AI与就业等简要发表自己的看法。
以下是一份关于常用 AI 工具的体验报告: 一、AI 工具使用过程和感受 1. 超级简历优化助手 使用过程:用户上传简历,工具分析内容并提供优化建议。 个人感受:对于求职者来说,能够针对性地提升简历质量,提高求职成功率,操作简单易懂。 2. 酷家乐等设计软件 使用过程:用户上传户型图,软件通过 AI 生成多种室内设计方案。 个人感受:为室内设计提供了便捷和丰富的创意,节省了设计时间和精力。 3. Amper Music 使用过程:用户提出需求,工具生成旋律和编曲。 个人感受:对音乐创作者有很大的辅助作用,激发创作灵感。 4. 松果倾诉智能助手 使用过程:通过文字或语音与用户交流,提供情感咨询。 个人感受:在情感支持方面提供了及时的帮助和建议。 5. 小佩宠物智能设备 使用过程:实时监测宠物的活动、饮食等状况,提供健康预警。 个人感受:让宠物主人能更方便地关注宠物健康。 6. 马蜂窝智能行程规划 使用过程:根据用户输入的目的地、时间等因素定制旅游路线。 个人感受:为旅行规划提供了个性化的方案,节省了规划时间。 7. 作业帮智能辅导 使用过程:根据学生的学习情况提供针对性的学习方案。 个人感受:有助于学生获得更贴合自身需求的学习辅导。 8. AI 游戏道具推荐系统 使用过程:在游戏中分析玩家风格和进度,推荐合适道具。 个人感受:提升了游戏体验,使玩家能更有效地获取所需道具。 9. AI 天气预报分时服务 使用过程:利用彩云天气提供每小时的天气预报。 个人感受:为出行和活动安排提供了更精准的参考。 10. AI 医疗病历分析平台 使用过程:分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 个人感受:有助于提高医疗诊断的准确性和效率。 11. AI 会议发言总结工具 使用过程:在会议中自动总结发言者的主要观点和重点内容。 个人感受:方便会议记录和回顾,提高工作效率。 12. AI 书法作品临摹辅助工具 使用过程:识别书法作品的笔画和结构,为用户提供临摹指导和评价。 个人感受:对书法爱好者的临摹学习有一定的帮助。 二、关于 AI 相关热点话题的看法 1. AI 伦理 随着 AI 技术的广泛应用,数据隐私、算法偏见等伦理问题日益凸显。需要建立健全的法律法规和伦理准则,确保 AI 的发展符合人类的价值观和利益。 2. AI 与就业 AI 的发展可能会导致一些传统岗位的减少,但同时也会创造新的就业机会,如 AI 开发、维护和管理等。重要的是通过教育和培训,提升劳动者的技能,以适应新的就业需求。 三、健身的 AI 产品 1. Keep:中国最大的健身平台,提供全面的健身解决方案,帮助用户实现健身目标。 2. Fiture:沸彻魔镜集硬件、丰富课程内容、明星教练和社区于一体。 3. Fitness AI:利用人工智能进行锻炼,增强力量和速度。 4. Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时提供指导。
2024-11-11
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题,有什么ai工具,可以帮助我
目前在市场上,还没有能够完全替代家教老师团队进行 1v1 辅导,包括根据学生当天学习课程出题、定时监督并整理错题等全方位功能的单一 AI 工具。但您可以考虑结合使用以下几种 AI 相关的技术和工具来部分实现您的需求: 1. 智能学习管理系统:这类系统可以根据学生的学习进度和表现生成一些练习题,但可能无法完全针对当天学习的课程精准出题。 2. 自然语言处理工具:帮助分析学生的学习情况和问题,为后续的辅导提供一定的参考。 需要注意的是,AI 工具在教育中的应用仍处于不断发展和完善的阶段,不能完全替代人类教师的情感支持、个性化引导和灵活应变能力。
2024-11-18
免费的PPT制作AI工具
以下是一些免费的 PPT 制作 AI 工具: 歌者 PPT(gezhe.com):是一款永久免费的智能 PPT 生成工具。具有话题生成、资料转换、多语言支持、海量模板和案例库、在线编辑和分享、增值服务等功能。其产品优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。推荐理由为完全免费、智能化程度高、模板和案例丰富、支持多语言以及几乎无需学习成本就能上手使用。 Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还包括互动元素和动画效果。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照 AI 生成 PPT 大纲、手动优化大纲、导入工具生成 PPT、优化整体结构的思路来完成设计和制作。 另外,推荐 2 篇市场分析的文章供参考: 《》 《》
2024-11-18
现在有关UX设计的AI工具有哪些?
以下是一些有关 UX 设计的 AI 工具: Midjourney 和 Figma 结合用于 AI 驱动的 UI 设计,如设计和原型应用程序。 Generative UI Design: Einstein, Galileo, and the AI Design Process Uizard 自动设计器 Replit Future Tools CodeDesign.ai XR 设计 CoPilot Designer AIPowered NoCode Content Authoring Tool 用户研究工具:Synthetic user 搜索工具:perplexity Figma 平台的 AI 插件,如 Ando Your design copilot、Magician for Figma、Diagram 未来设计师的 AI 设计工具、QoQo your user experience AI companion 此外,目前有一些基于人工智能生成内容的工具(AIGC)可用于产品原型设计,如: UIzard:利用 AI 技术生成用户界面。 Figma:基于云的设计工具,提供自动布局和组件库,其社区也有一些 AI 插件。 Sketch:提供插件系统,部分插件利用 AI 技术辅助设计。 在 CAD 图绘制方面,存在以下 AI 工具和插件: CADtools 12:Adobe Illustrator 插件,添加了 92 个绘图和编辑工具。 Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:根据用户输入自动生成 3D 模型。 主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 需要注意的是,使用这些工具通常需要一定的 CAD 知识和技能,对于初学者建议先学习基本建模技巧再尝试使用。以上内容由 AI 大模型生成,请仔细甄别。
2024-11-18
国产AI工具最好用的有哪些?
以下是一些好用的国产 AI 工具: 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费最高可达几千元,临时或轻度使用有免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,生成图像质量高、细节丰富,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可,但在某些方面存在局限性,如某些类型图像因监管要求无法生成,处理非中文语言或国际化内容可能不够出色。 AI 助手平台: 传音智库:公司内部平台,功能类似 Poe,仅内网可访问,可用 kimi 替代。 Kimichat:https://kimi.moonshot.cn/ 秘塔 AI:https://metaso.cn/ 此外,还有一些在特定领域有讨论度的国产 AI 工具,如 Brev.AI 能生成更好听的中文歌等。
2024-11-18
有什么AI工具可以只做虚拟动画形象,可以根据输入的文本说话
以下是一些可以制作虚拟动画形象并根据输入文本说话的 AI 工具: 动画(视频动画):DID 和 HeyGen 可以使图像“说话”,但目前可供使用的能生成高保真度说话人脸的模型不多。 语音(语音合成):ElevenLabs 可以赋予虚拟形象一种声音,并且能够控制年龄、性别和口音。 此外,用于在视频中为人脸制作动画的工具还有 DiD,从文本创建视频的工具可以选择 Runway v2。
2024-11-18
提示词生成工具
以下为您介绍一些提示词生成工具: 【SD】自动写提示词脚本 One Button Prompt:在“高级”中设置提示词混合,可将主菜单中填写的前缀后缀全部混合。点击生成能得到多人的随机绘画,但可能存在生成不成功的情况。此脚本最后还有一键运行放大模块,包括完整的文生图放大和图生图放大,甚至可接入其他脚本和 controlnet。若想获取此插件,可添加公众号【白马与少年】,回复【SD】。 教育类提示词生成工具: 个人简介 Bio 生成器(互联网语言风格):作者为李继刚,可帮助用户快速生成互联网平台上使用的 Bio。需用户输入个人基本信息,基于商业模式画布生成五行 Bio 介绍,每行有一个 Emoji 表情。 分享卡片生成器:作者为李继刚,用于市场营销,可生成美观的聊天框分享卡片,展示标题、关键词和摘要信息。能自动抽取相关信息,限制每行信息长度,用 Emoji 符号或 Unicode 符号美化排版,且关键词需以“”符号开头突出。
2024-11-18