直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

什么是llm

回答

LLM(语言逻辑模型)是一个抽象的概念,在以下几个方面具有重要特点和作用:

  1. 在 LangChain 平台中,LLM 是与各种大模型进行交互的核心模型。其输入是用户的请求或问题的字符串,输出是模型的回答或结果的字符串。它能够根据不同输入调用不同大模型,完成如文本生成、理解、翻译等语言任务。
  2. 对于开发者而言,LLM 的优势在于无需关心大模型的细节和复杂性,只需关注语言的逻辑和意义,就可利用大模型能力构建应用。同时,开发者能灵活选择和切换大模型,无需修改代码或适配接口,还能自己封装实现自己的语言逻辑和功能。
  3. 大语言模型(如豆包)在回复时通常是一个字一个字的流式输出方式。这是因为大模型确实在一个字一个字地推理生成内容,类似于输入法的输入联想逻辑,通过加入上下文帮助模型理解下一个字。但大模型学习数据规模海量,每次计算若带入全量数据,算力上难以承受。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

开发:LangChain大模型应用开发指南-封装自己的LLM

LLM(语言逻辑模型)是LangChain平台与各种大模型进行交互的核心模型,它是一个抽象的概念,可以理解为一个能够处理语言输入和输出的黑盒。LLM的输入是一个字符串,表示用户的请求或问题,LLM的输出也是一个字符串,表示模型的回答或结果。LLM可以根据不同的输入,调用不同的大模型,来完成不同的语言任务,如文本生成、文本理解、文本翻译等。LLM的优势在于,它可以让开发者无需关心大模型的细节和复杂性,只需要关注语言的逻辑和意义,就可以利用大模型的能力来构建自己的应用。LLM也可以让开发者灵活地选择和切换不同的大模型,而无需修改代码或适配接口。LLM还可以让开发者自己封装自己的LLM,来实现自己的语言逻辑和功能。

问:LangChain 和 RAG 有什么关系?

LangChain是一个用于构建高级语言模型应用程序的框架,它提供了一系列的工具和组件,使得开发人员能够更容易地使用大型语言模型(LLM)来创建各种应用程序。LangChain的设计主张集中在模块化组件上,这些组件提供用于使用LLM的行为抽象,并为每个抽象提供实现的集合,从而允许开发人员构造新链或实现现成的链。RAG,即检索增强生成(Retrieval-Augmented Generation),是一种结合了检索(检索外部知识库中相关信息)和生成(利用LLM生成文本)的技术。RAG能够为LLM提供来自外部知识源的附加信息,使得LLM在应对下游任务时能够生成更精确和上下文相关的答案,并减少LLM的幻觉现象。LangChain和RAG之间的关系可以概括为:

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

首先讲一下LLm,即large-language-model,大语言模型的工作原理。我们可以观察LLm大模型比如豆包在回复的时候,是不是一个一个字,行业里称之为流式输出的方式给你呈现内容的。为什么会这样呢?这是因为,大模型确实是在一个字一个字地去推理生成内容的。就好像我们看输入法的输入联想逻辑,输入联想,其实就是根据你输入的单个字,来推测你要输入的下个字是什么。比如我打了一个“输”字,那么我要打的下字就很有可能是“入”,当然这里就会有人问了,我要打的下个字也很有可能是“球”啊。没错,最开始的研究人员确实也识别到了这个问题。那么解法是什么呢?其实很简单,我们把上下文加入到输入里,不就能帮助模型理解下个字该是什么了吗。比如我们输入的是“我想在这个单元格中输”,那这下一个字大概率就是“入”。而我们如果输入的是“这场足球比赛中,输”,那下一个字大概率就是“球”。那么看到这里,善于思考的同学可能会发现这里存在第一,我们知道大模型的学习数据规模往往是海量的,每次的计算如果都带入全量的数据,算力上肯定是吃不消的。

其他人在问
LLM应用可观测性
LLM 应用的可观测性主要体现在以下方面: LangChain:借助 LangSmith 提供更好的日志、可视化、播放和跟踪功能,以便监控和调试 LLM 应用。LangSmith 是基于 Web 的工具,能查看和分析细化到 class 的输入和输出,还提供跟踪功能,用于记录和展示 LLM 应用的执行过程和状态,以及 LLM 的内部信息和统计数据。 Langfuse:为大模型应用提供开源可观测性和分析功能,在可视化界面中可探索和调试复杂的日志和追踪,并使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 此外,微软(中国)的《面向大模型的新编程范式》报告中也强调了在线监控和可观测性的重要性。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
除了LLM,就没有AI模型了吗?
除了 LLM ,还有很多其他类型的 AI 模型。以下为您详细介绍: 1. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。其中生成图像的扩散模型就不是大语言模型。 2. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习:一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。 4. 谷歌的 BERT 模型:可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。生成式 AI 生成的内容,叫做 AIGC 。
2025-04-11
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27
anythingLLM本地部署
以下是关于本地部署大模型以及搭建个人知识库的相关内容: 一、引言 作者是大圣,一个致力于使用 AI 工具将自己打造为超级个体的程序员,目前沉浸于 AI Agent 研究。本文将分享如何部署本地大模型及搭建个人知识库,读完可学习到如何使用 Ollama 一键部署本地大模型、了解 ChatGPT 信息流转、RAG 概念及核心技术、通过 AnythingLLM 搭建本地化数据库等。 五、本地知识库进阶 如果想要对知识库进行更灵活掌控,需要额外软件 AnythingLLM,它包含所有 Open WebUI 能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 构建本地知识库: AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式,提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档数据给出答案)。 配置完成后可进行测试对话。 六、写在最后 作者推崇“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系作者或加其免费知识星球(备注 AGI 知识库)。 本文思路来源于视频号博主黄益贺,作者按照其视频进行实操并附加了一些关于 RAG 的额外知识。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25