Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型赛道盘点

Answer

以下是对大模型赛道的盘点:

  1. Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型,包括阿里通义千问、百度文心一言、腾讯混元、讯飞星火、字节跳动豆包、智谱 AI、百川智能、零一万物、月之暗面等,用户可在平台选择大模型两两“对战”,实名或匿名对战皆可。在 Qwen 系列中,Qwen2 性能优越,所有尺寸的模型都使用了 GQA 以带来推理加速和显存占用降低的优势,针对小模型使用了 tie embedding 的方法让输入和输出层共享参数。所有预训练模型在 32K tokens 数据上训练,在 128K tokens 时仍有不错表现,指令微调模型还需进行长序列理解实验。
  2. 伯克利的团队管理着聊天机器人竞技场,根据 ELO 评级对不同语言模型进行排名,计算方式与国际象棋相似。顶部是专有封闭模型,如 OpenAI 的 GPT 系列和 Anthropic 的 Claude 系列,下方是开放权重的模型,如 Meta 的 Llama2 系列,底部有 Zephyr 7b Beta 等。
  3. 有观点认为大模型应用是除内容、电商、o2o、工具之外的第五条赛道,但当前其是否够资格有待商榷。许多产品同学未真正意识到大模型带来的变革,思路和视角仍停留在传统互联网商业模式上。
Content generated by AI large model, please carefully verify (powered by aily)

References

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

Compass Arena是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的20多款大模型,包括阿里通义千问、百度文心一言、腾讯混元、讯飞星火、字节跳动豆包、智谱AI、百川智能、零一万物、月之暗面等等,用户可在平台选择大模型的两两“对战”,实名或匿名对战皆可。三、Qwen2为什么能有如此优越的性能?通义千问技术博客披露,在Qwen1.5系列中,只有32B和110B的模型使用了GQA。这一次,所有尺寸的模型都使用了GQA,以便让用户体验到GQA带来的推理加速和显存占用降低的优势。针对小模型,由于embedding参数量较大,研发团队使用了tie embedding的方法让输入和输出层共享参数,增加非embedding参数的占比。上下文长度方面,所有的预训练模型均在32K tokens的数据上进行训练,研发团队发现其在128K tokens时依然能在PPL评测中取得不错的表现。然而,对指令微调模型而言,除PPL评测之外还需要进行[大海捞针](https://github.com/gkamradt/LLMTest_NeedleInAHaystack)等长序列理解实验。在使用YARN这类方法时,Qwen2-7B-Instruct和Qwen2-72B-Instruct均实现了长达128K tokens上下文长度的支持。

文章:Andrej Karpathy 亲授:大语言模型入门

好的,最后,我想向你展示当前领先的大型语言模型的排行榜。例如,这就是聊天机器人竞技场。它由伯克利的一个团队管理。他们在这里所做的是根据ELO评级对不同的语言模型进行排名。计算ELO的方式与国际象棋中的计算方式非常相似。所以不同的棋手互相对弈。根据彼此的胜率,你可以计算他们的ELO分数。你可以使用语言模型做完全相同的事情。所以你可以访问这个网站,输入一些问题,你会得到两个模型的响应,你不知道它们是由什么模型生成的,然后你选择获胜者。然后根据谁赢谁输,你就可以计算出ELO分数。所以越高越好。所以你在这里看到的是,拥挤在顶部的是专有模型。这些是封闭模型,你无法访问权重,它们通常位于网络界面后面。这是OpenAI的GPT系列,以及Anthropic的Claude系列。还有其他公司的一些其他系列。所以这些是目前表现最好的模型。然后就在其下方,你将开始看到一些开放权重的模型。因此,这些权重是可用的,人们对它们有更多了解,通常有相关论文可用。例如,Meta的Llama2系列就是这种情况。或者在底部,你可以看到Zephyr 7b Beta,它基于法国另一家初创公司的Mistral系列。

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

变革归变革,那么作为产品人,我们该怎么去把ai这个能力用起来呢?我认为转变自己的“传统”产品设计思路和视角,是最关键的一步。其实我前段时间我在一个仅面向产品经理的公众号中,读到一篇对大模型发展未来表达看法的文章。文章的开篇,就表达了认为大模型应用是在内容、电商、o2o、工具之外的第五条赛道,且当前是否够资格成为“第五条赛道”都有待商榷。在该文章的评论区下,我建议作者先去了解下大模型的基础原理以及当前的技术发展状况。当时之所以这样说,只是因为我觉得许多产品同学实际上并未真正意识到这次大模型所带来的变革,所以他们的思路和视角,依然停留在传统互联网商业模式上,仍然认为此次的变革只是在传统的基础之上做更新。但上面我们也说了,这次的ai变革是从互联网最底层的if-else逻辑开始的,而那些传统互联网的商业模式,只是基于传统的互联网技术架构和用户需求综合出来的产物。

Others are asking
AI办公赛道有什么agent
以下是关于 AI 办公赛道中一些 agent 的相关信息: 陈财猫在 AI 写作方面开发了小财鼠程序版 agent,认为 AI+内容创作是现阶段较好的赛道。 一些常见的 Agent 构建平台包括: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:具备外挂数据、定义流程等功能。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机等。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台。 钉钉 AI 超级助理:依托钉钉优势,在高频工作场景表现出色。 此外,还有关于生成式 AI 季度数据报告 2024 年 1 3 月中 Agents 的相关图谱和数据,如 a16z 图谱、E2B Agent 系列图谱等,其中提到该赛道天花板潜力达几百亿美金,总体趋势高速增长,竞争方面存在一定特点,Top1 公司如 GitLab 等相关情况。
2025-01-14
ai宠物赛道
以下是关于 AI 宠物赛道的相关信息: AI 与宠物的结合方式有多种: 1. AI 宠物助手:基于自然语言处理和计算机视觉,能帮助主人更好照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 2. AI 宠物互动玩具:利用 AI 技术开发的智能互动玩具,可增强宠物娱乐体验,例如会自主移动并引起宠物注意、会发声和互动的智能玩具等。 3. AI 宠物图像生成:使用生成式 AI 模型,能根据文字描述生成各种宠物形象图像,帮助宠物主人定制个性化形象。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发 AI 辅助的宠物医疗诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,利用 AI 技术分析宠物行为模式,帮助主人了解宠物需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 此外,还有一个摊位信息,其活动主题为“AI 宠物写真、AI 宠物旅拍”,slogan 是“不花钱让毛孩子走遍时间”,优势是本人为全网 13w 粉宠物博主@三小只它爹妈,账号有 ai 系列内容,有 ai 实践经验且自带流量,去年自驾带猫环游中国,找到了很多猫生照片的机位。摊位区域为 D,摊位类型为写真+宠物,需找主办方。 另外,火山引擎 AI 创造者大赛官方手册中提到了优秀奖的相关信息,包括 AI 座舱赛道、AI 营销赛道、AI 售后赛道的小组名称和 Bot 名称等。如有任何疑问,请随时与大赛组委会联系。
2025-01-10
runway具体属于哪种赛道,怎么描述它
Runway 属于 AI 视频领域。它是一款最先推出模型的 AI 视频产品,目前仍维持着领先地位,并在不断快速迭代。 其产品定位更偏向影视、艺术表达,具有以下特点和优势: 1. 擅长真实系、风景、空间视频生成,对二次元场景支持不佳。 2. 支持绿幕场景生成、视频绿幕抠像等,方便影视制作和后期处理。 3. 7 月更新的 Gen3 支持 Alpha Turbo(更快速)和 Alpha(更强表现力)两种模式,增强了对复杂提示词描述的理解和对图像运动元素的识别,能够实现富有想象力的过渡和场景中元素的精确关键帧。还支持设置图片作为动画首帧/尾帧,但目前不支持笔刷等高级调节能力。单次生成视频时长最长可达 10 秒,可延长到 40 秒。 4. Gen3 Alpha Turbo 支持竖屏尺寸视频生成、加大力度发力视频到视频(风格转绘)能力,并表示即将推出更多控制能力。 Runway 由一家总部位于旧金山的 AI 创业公司制作,年初在互联网爆火。2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。目前支持在网页、iOS 访问,网页端有 125 积分的免费试用额度(可生成约 105 秒视频),iOS 有 200 多,两端额度不同步。 相关链接: 1. 查看 Runway 目前支持的场景和视频案例:https://runwayml.com/product/usecases 2. Gen1 能力介绍:https://research.runwayml.com/gen1 3. Gen1 参数设置:https://help.runwayml.com/hc/enus/articles/15161225169171 4. 学习 Gen1 详细设置方式的视频:https://youtu.be/I4OeYcYf0Sc 5. 官方网站:https://runwayml.com/
2024-10-12
ai+赛道盘点
以下是一些 AI 相关的赛道盘点: AI 与宠物结合:这是一个充满想象空间的新兴赛道,可基于 AI 技术和宠物行业需求开发各种有趣有用的应用。 Agent 相关比赛赛道: 图文创作赛道:包括 AI 自动编写文章并选择或生成相应图片、图像标注、图文匹配等。 实用工具赛道:涵盖数据可视化、设计辅助(如生成 LOGO、海报设计)、自动化排版、图文识别等。 互动创意赛道:例如新闻和社交媒体方面,AI 对大量信息进行自动编辑和汇总生成有趣的图文摘要;艺术创作领域,辅助绘画、音乐创作、文学创作等,鼓励探索 AI 与艺术结合的新模式。
2024-08-26
AI+宠物赛道的一些例子和学习map
根据提供的搜索结果,我总结了以下关于 AI+宠物赛道的一些例子和学习路径: 1. AI 宠物助手 基于自然语言处理和计算机视觉的 AI 宠物助手,可以帮助主人更好地照顾宠物 例如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等 2. AI 宠物互动玩具 利用 AI 技术开发的智能互动玩具,可以增强宠物的娱乐体验 例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等 3. AI 宠物图像生成 使用生成式 AI 模型,可以根据文字描述生成各种宠物形象的图像 这可以帮助宠物主人定制个性化的宠物形象 4. AI 宠物医疗诊断 利用计算机视觉和机器学习技术,可以开发 AI 辅助的宠物医疗诊断系统 通过分析宠物的症状图像和病历数据,提供初步诊断建议 5. AI 宠物行为分析 基于传感器数据和计算机视觉,可以利用 AI 技术分析宠物的行为模式 帮助主人更好地了解宠物的需求和习性 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术 2. 了解宠物行为学、宠物医疗等相关领域知识 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化 总的来说,AI+宠物是一个充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可以开发出各种有趣有用的应用。
2024-04-23
Ai+宗教佛学自媒体,用mj生成图片加runway动起来在配合剪映制作成视频,最后配上符合佛学的宁静音乐。用它制作视频,上传到各大平台,分析此赛道并复现
这个赛道结合了多种技术和内容,需要进行以下步骤来实现: 1. 准备素材: 收集宗教佛学相关的图片、视频素材,以及符合佛学理念的宁静音乐。这些素材可以来自于网络上的免费资源或者自己制作,确保版权合法。 2. 使用 MJ 生成图片: 利用 Midjourney(MJ)生成符合宗教佛学主题的图片。可以在 MJ 平台上选择合适的模板和风格,生成高质量的图片素材。 3. 使用 Runway 生成动画: 使用 Runway 将生成的图片转换为动态效果。Runway 是一个 AI 动画生成工具,可以为静态图片添加生动的动画效果,增强视觉效果。 4. 使用剪映制作视频: 将生成的动态图片和视频素材导入到剪映等视频编辑软件中,进行剪辑和编辑。根据需要调整剪辑顺序、添加过渡效果、字幕等,制作成符合宗教佛学主题的视频内容。 5. 配音乐: 在视频编辑过程中,将符合佛学理念的宁静音乐添加到视频中。选择合适的音乐可以增强视频的氛围和情感,让观众更好地沉浸其中。 6. 导出和上传: 完成视频编辑后,将视频导出为常见的视频格式,如MP4等。然后上传到各大视频平台,如YouTube、抖音、Bilibili等,分享给目标受众。 7. 分析和优化: 视频上传后,关注观看量、点赞数、评论等指标,分析观众反馈和视频效果。根据分析结果,优化视频内容和推广策略,提升视频的影响力和曝光度。 以上就是实现该赛道的步骤,需要整合利用 MJ、Runway、剪映等工具和平台,以及宗教佛学素材和宁静音乐,制作出符合佛学理念的高质量视频内容,并通过上传到各大平台进行推广和分享。
2024-04-20
24年AI大事件盘点
以下是 2024 年 AI 大事件的盘点: 10 月: 9 月 27 日:Reecho 睿声●三只羊录音事件涉及 AI 公司出面回应。 9 月 28 日:TeleAI●正式开源 TeleChat2115B。 10 月 1 日:快手●可灵 AI 全面开放 API,OpenAI DevDay。 10 月 2 日:Black Forest Labs●发布 FLUX1.1,苹果●推出多模态大模型 MM1.5。 10 月 3 日:OpenAI●发布 ChatGPT Canvas。 10 月 8 日:2024 年诺贝尔物理学奖。 10 月 9 日:2024 年诺贝尔化学奖。 10 月 10 日:字节●发布首款 AI 智能体耳机 Ola Friend,Vivo●增加蓝心端侧大模型 3B,谷歌●图像生成模型 Imagen 3 开放使用,智源●BGE 登顶 Hugging Face 月榜,State of AI 2024 报告发布。 10 月 11 日:智谱●GLM4Flash 与「沉浸式翻译」合作,北大&北邮&快手●开源高清视频生成模型 Pyramid Flow。 10 月 12 日:OpenAI●开源多智能体协作框架 Swarm,深势科技●完成数亿元人民币新一轮融资,苹果●质疑当前 LLM 缺乏真正的逻辑推理能力。 10 月 14 日。 11 月: 11 月 1 日:《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 11 月 1 日:《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 11 月 1 日:《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 在 2024 年,AI 商业界还发生了以下事件: 全球芯片出口管制下,中国仍成重要市场。美国商务部长吉娜·雷蒙多警告英伟达:“如果你围绕中国特定的需求重新设计芯片,我将在第二天控制它。”据悉,中国在美芯片制造商中所占的份额正在减少。据英伟达称,它从代表 NVIDIA 数据中心业务的 20%下降到“中个位数”。尽管中国实验室在进口硬件方面受到限制,但其当地分支机构目前没有控制权。字节跳动通过美国的甲骨文租用 NVIDIA H100 访问权限,而阿里巴巴和腾讯则与 NVIDIA 就在美国建立自己的数据中心进行谈判。与此同时,谷歌和微软直接向中国大型企业推销他们的云服务。 模型变得更便宜了。以前认为提供强大模型的成本过高,但现在提供这些模型的推断成本正在下降。OpenAI 更达到 100 倍下降!Google Gemini 生产了一种具有很强竞争力的定价系列!Gemini 1.5 Pro 和 1.5 Flash 的价格在推出后几个月内下降了 64%86%,而性能强劲,例如 Flash8B 比 1.5 Flash 贵 50%,但在许多基准测试中表现相当。注意:价格适用于<128K 令牌提示和输出。检索日期为 2024 年 10 月 4 日。考虑到计算成本很高,模型构建者越来越依赖与大型科技公司建立合作伙伴关系。反垄断监管机构担心这将进一步巩固现有公司的地位。
2024-12-15
大模型输出和节点输出配置不匹配怎么解决
当大模型输出和节点输出配置不匹配时,您可以参考以下要点来解决: 1. 输入与输出的变量名称可自定义,按照自身习惯设定,以便识别字段含义。 2. 输入方面,因为取得的是开始节点中用户输入的{{BOT_USER_INPUT}},所以可直接选择引用。 3. 在提示词区域,由于需要 LLM 根据输入信息处理,所以需要两个双花括号,写明使用的输入项参数名,如{{input}}。 4. 输出方面,有几项子内容需要生成,就设置几项: 为了让大模型理解最终输出的形式要求,需要在用户提示词最后,添加输出格式段落,描述每个变量名称、输出内容、输出格式。 务必注意,变量名称、对应的输出内容、输出格式一定要前后完全一致,否则会输出失败,这一点很容易踩坑。 另外,虽然可以用大模型来实现变量类型的转换,比如选择“豆包·工具调用”,在大模型的高级设置中尽量把随机性调到最低,使其更严格遵循提示词。匹配好输入输出的名称与类型,提示词中注意用{{}}引用输入变量。但大模型节点效果不稳定,运行速度相对较慢,还可能带来额外花费。尤其当输出类型为 String 时,大模型容易画蛇添足地加上一些说明性文字,即使优化提示词去限制,也不一定每次都能限制住。一旦出现偏差,哪怕只是多一个字符,下游节点就可能无法正常运行,且对此调整手段有限。所以如果没有“代码恐惧症”,建议使用代码节点来实现。
2025-02-26
帮我总结现在主流的AI大模型,以及各自优劣
以下是对主流 AI 大模型的总结及各自优劣的相关内容: 主流 AI 大模型: 1. 谷歌的 BERT 模型:可用于语义理解,如上下文理解、情感分析、文本分类等,但不太擅长文本生成。 相关技术概念: 1. AI:即人工智能。 2. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:参照人脑,具有神经网络和神经元,因层数多被称为深度。神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,其完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-02-26
大模型训练全流程
大模型训练通常包括以下全流程: 1. 收集海量数据:如同教导孩子成为博学多才之人,要让其阅读大量书籍、观看纪录片、与人交谈,对于 AI 模型,就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,这种架构擅长处理序列数据(如文本)。 4. 训练模型:如同孩子开始学习,AI 模型开始“阅读”提供的数据,通过反复阅读尝试预测句子中的下一个词,从而逐渐学会理解和生成人类语言。 此外,大模型训练还可以类比为“上学参加工作”: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 一般训练还会有以下步骤: 1. 无监督学习:模型通过分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 2. 清洗出好的数据。 3. 指令微调:训练模型理解并执行具体指令,如翻译文本以回答问题,输入内容包括特定格式的指令、输入和输出。 4. 对齐过程:通过引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 虽然各公司具体实现细节可能是机密,但这些步骤共同构成了构建高效、实用大语言模型的过程,最终产生的模型可能含有高达 1750 亿个参数。在开源与闭源模型的开发策略中,开源模型依赖社区贡献,闭源模型由企业投入大量资源开发,两种策略都旨在推动大语言模型技术发展和应用。
2025-02-26
通义千问最新模型
通义千问最新模型情况如下: 发布了一个模型并开源了两个模型。 Qwen2.5Max:全新升级发布,比肩 Claude3.5Sonnet,几乎全面超越 GPT4o、DeepSeekV3 及 Llama3.1405B。是阿里云通义团队对 MoE 模型的最新探索成果,预训练数据超过 20 万亿 tokens。在多项公开主流模型评测基准上录得高分,开发者可在 Qwen Chat(https://chat.qwenlm.ai/)平台免费体验模型,企业和机构也可通过阿里云百炼平台直接调用新模型 API 服务。 Qwen2.5VL:全新视觉模型实现重大突破,增强物体识别与场景理解,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,7B 模型出现少量错误。在更复杂的长上下文理解任务中,Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
AI模型私有化部署
AI 模型私有化部署具有以下特点和情况: 挑战方面: 在许多中小型行业,如金融、医疗和法律行业,由于对数据私密性要求极高,客户隐私敏感度高,往往需要私有化部署场景,这大大增加了企业培训的难度。 访问 GPT 有门槛,国企类、体制类的合作伙伴可能受限,需要寻找更易于接入的国产模型作为替代方案,如智谱等。 工程化落地难,企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。例如某金融企业希望使用大模型构建 AI 智能问答机器人并私有化部署,但因自身规模不大且无数字化系统,实际落地成本可能不比传统人力成本节省更多。 经验分享方面: 构建企业知识库是常见需求,一种普遍解决方案是结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可进行模型的 Finetuning(微调)以优化性能。 基础模型提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。通过 Finetuning 可增强基础模型的知识库、调整输出和教授更复杂指令,提高模型整体性能和效率。 360 愿意为有能力的企业赠送免费的私有化部署通用大模型,其可解决隐私泄露和数据流失问题,满足科普和一些通用需求,如办公等。同时提供 360AI 办公的会员服务,围绕办公营销需求做了很多工具,并将其场景化。
2025-02-26