直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

Agent的反思与改进是怎么做到的

回答

在 LLM 支持的自主 Agent 系统中,Agent 的反思与改进主要通过以下方式实现:

  • 自我批评和自我反思:对过去的行为进行审视和分析。
  • 从错误中吸取教训:总结过往错误的经验,明确问题所在。
  • 针对未来步骤进行完善:基于反思和教训,对后续的行动策略和方法进行调整和优化,从而提高最终结果的质量。

这种反思与改进能力通常伴随着将大型任务分解为更小、可管理的子目标的规划过程,以及短期记忆和长期记忆的辅助,还有调用外部 API 等工具获取额外信息的能力。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
你能帮我找到这篇报告吗?他的名字是《InfoQ:中国AI Agent应用研究报告2024》
以下是为您找到的《InfoQ:中国 AI Agent 应用研究报告 2024》的链接:https://waytoagi.feishu.cn/record/Y45LrXJiwe4SgYc5tMZcVVtqn6b
2024-10-31
传统的agent是怎么定义的
传统的 agent 定义如下: 在古希腊哲学中,对“行动者”(Agent)的探讨深刻影响了后世对道德责任和个体决策的理解。尽管当时未使用现代意义的“Agent”术语,苏格拉底、柏拉图和亚里士多德等哲学家已为其奠定基础。 亚里士多德在《尼各马科伦理学》中探讨德性伦理学,认为人的善良和幸福源自由理性和智慧引导的德性生活,区分了“被动行为”与“主动行为”,强调有道德价值的行为应是个体自愿且有明确意图的选择,个体作为行动者不仅要靠理性指导行为,还要对自愿行为承担道德责任。 苏格拉底通过独特对话法促使人们自我反省,考察行为是否符合道德标准,提出“无人有意作恶”,认为错误源于无知,主张通过增长智慧和美德引导正确决策。 柏拉图在《理想国》中构建理想社会模型,探讨灵魂三部分关系,认为理性主导时个体才能做出正确选择,将知识与道德紧密相连。 虽然古希腊哲学家未直接讨论“自由意志”,但他们关于个体自主决策及对结果负责的思考,对后世关于自由意志和道德责任的讨论影响深远,亚里士多德强调人作为理性动物应依据内在理性及外在自然法则实现德性和善。 在 20 世纪 60 年代,马文·明斯基定义“Agent”为一个自主、独立运行的计算或认知实体,具备感知、决策和执行任务的能力,有自己的目标、行为和策略,能与其他 Agent 交互和协作,可视为智能系统中的功能模块,在不同层次执行不同功能,通过协作实现复杂智能行为。在其著作《心智社会》中,深入探讨了人类思维和人工智能的复杂关系。
2024-10-28
Agent是什么 AI agent是什么
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现,这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能,包括专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐了,往后,我们都将其称之为 AI Agent。 AI Agent 还包括下面几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 此外,还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Responser Agent、Daily Agent、Background Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2024-10-28
建立Agent
以下是一些常见的 Agent 构建平台及相关信息: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大场景和数据优势,在处理高频工作场景表现出色。 使用扣子 coze.cn 等平台创建智能体 Agent 的过程被创作者形象地比喻为“捏 Bot”,最简单的 Bot 往往 1 分钟内可完成。常见 Bot 有讲故事、减肥提醒、生成 PPT、真假新闻辨识、新闻资讯收集、扮演“甄嬛”等。国内外有多个可在几分钟内完成 Agent 创建的平台,如国内版扣子 coze.cn、海外版 Coze coze.com、百度 AppBuilder、阿里通义千问、智谱 AI 等,可先从扣子 coze.cn 开始。 AgentSims 是国产斯坦福 AI 小镇,在其框架中: command 文件夹下包含所有对外接口,每个接口类实现 execute 方法作为 handler,有关键方法与接口。 系统中有预设的 Agent 样例可选择,初始化沙箱世界时会选默认模板。 游戏界面提供自行创建 Agent 的选项,可选择外观、名字、LLM、记忆系统、计划系统、最终目标、人物特征等,创建后信息保存到 mysql 中,后续可复用,系统宕机也可从数据库进行恢复。 以上信息由 AI 大模型生成,请仔细甄别,您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-10-27
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具。我说的是如何写提示词,才能让deepseek通过Function Calling调用工具。
要在 Dify 的 agent 的 prompt 里让 DeepSeek 通过 Function Calling 调用工具,您可以参考以下内容: 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入:将工具信息及使用工具的提示词添加到系统提示中。INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,可动态调整。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传:利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 2. 当模型判断需要调用工具函数时,检测到返回的 json 里 function_call 字段不为空,则执行异步函数调用,采用回调方式获取函数返回结果。通过判断返回的 functionCall 的名称执行不同函数并返回结果。 3. 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放 sys prompt、memory、user query;Tools 里放能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆在 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型交互,没有 tool_calls 标记则循环结束。Multi Agents 是更换 system prompt 和 tools。
2024-10-24
搭建Agent时,如何实现Agent的反思与改进
在搭建 Agent 时,实现其反思与改进可以从以下几个方面考虑: 规划方面: 子目标分解:将大型任务分解为较小可管理的子目标,以便更有效地处理复杂任务。 反思与改进:对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 记忆方面: 短期记忆:将所有的上下文学习看成是利用模型的短期记忆来学习。 长期记忆:通过利用外部的向量存储和快速检索来存储和召回信息,为 Agent 提供长期存储和召回信息的能力。 工具使用方面: Agent 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。
2024-08-15
最新的AI可以做到什么程度的智能
目前最新的 AI 能够达到以下程度的智能: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI 智能体产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 例如 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型像 GPT2 等实际上没有真正连贯回应的能力。
2024-10-30
我有126个docs文件,我需要用同一套提示词,对这些文件进行总结,有什么工具可以做到
以下是一些可能用于对 126 个 docs 文件进行总结的工具和方法: 1. 可以考虑使用由杨志磊开发的律师的文本总结助手。其说明为对客户提供的文件或文本进行总结,具有明确的角色设定、目标和约束条件。链接地址为:https://waytoagi.feishu.cn/wiki/HvJGwlMFhidzZukPsoKcnuXlnKe 。 2. 在 Stable Diffusion 中,Embedding 功能可以将很多提示词打包到一个文件里。例如常见的负向提示词 Embedding,如 EasyNegative,官方推荐搭配二次元模型使用,能在一定程度上优化生成效果。但需注意,对于一些复杂问题如 AI 绘图中的手部问题,可能无法完全解决。
2024-10-22
数字人直播防分控要做到哪些?
以下是关于数字人直播防分控需要做到的一些方面: 在盈利方式方面: 1. 可以直接销售数字人工具软件,包括实时驱动和非实时驱动两类。实时驱动在直播时能改音频话术,真人可接管,标准零售价一年 4 6 万往上;非实时驱动一个月 600 元,效果差,类似放视频的伪直播,市场价格混乱,存在靠发展代理割韭菜的情况。 2. 提供数字人运营服务,按直播间成交额抽佣。 在适用品类和场景方面: 1. 适用于不需要强展示的商品,如品牌食品饮料;不适用于服装,因其过品快且衣服建模成本高。 2. 适用于虚拟商品,如门票、优惠券等。 3. 不适用于促销场景,这涉及主播话术、套路和调动直播间氛围的能力等。 4. 电商直播分为达播跟店播,数字人直播在店播中的效果最佳,数据基本能保持跟真人一样。 在壁垒和未来市场格局方面: 1. 从长期来看,技术上没有壁垒,但目前仍有技术门槛,单纯靠开源算法拼的东西,实时性、可用性不高,比如更真实的对口型、更低的响应延迟等。 2. 市场不会一家独大,可能有 4 5 家一线效果的公司,大多为二三线效果的公司。因为它只是工具,迁移成本低。 3. 真正把客户服务好,能规模化扩张的公司更有价值。疯狂扩代理割韭菜,不考虑客户效果的公司,售后问题会很麻烦。 4. 有资源、有业务的大平台下场,可能会带来降维打击,例如剪映马上要做,如果不仅提供数字人,还提供货品供应链、数据复盘分析等等,全环节打通会绑定商家,很难与之竞争。
2024-10-18
我有21个英文文献需要翻译,使用那种工具能做到免费、高效并准确的帮我翻译这些文献
以下是一些可以免费、高效且准确地翻译 21 个英文文献的工具: 1. 沉浸式翻译(浏览器插件): 。安装插件后,点击插件底部“更多”按钮,可选择“制作双语 BPUB 电子书”“翻译本地 PDF 文件”“翻译 THML/TXT 文件”“翻译本地字幕文件”等功能,它也支持阅读本地 PDF 等,是个实用的英文资料和网页翻译插件。 2. DeepL(网站): ,点击页面“翻译文件”按钮,上传 PDF、Word 或 PowerPoint 文件即可。 3. calibre(电子书管理应用): ,下载并安装 calibre,并安装翻译插件“Ebook Translator”。 4. 谷歌翻译(网页): ,使用工具把 PDF 转成 Word,再点击谷歌翻译“Document”按钮,上传 Word 文档。 5. 百度翻译(网页): ,点击导航栏“文件翻译”,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式,但进阶功能基本都需要付费。 6. 彩云小译(App):下载后点击“文档翻译”,可以直接导入 PDF、PDF、Word、Excel、PPT、TXT、epub、srt 等格式的文档并开始翻译,不过有免费次数限制且进阶功能需要付费。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方“切换成电子书”,轻触屏幕唤出翻译按钮。 8. 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。 此外,还可以利用 GPT 辅助阅读,虽然这种方式的阅读体验不够连续,需要跨两个页面来回复制和对话,但能从英译中到中译中,帮助您真正看得进去文档在说什么。还有浏览器插件莫妮卡 ,使用之后您随意刷住任意一段文字会出现翻译选项。但这个工具集成了 GPT 的功能,相当于网页版挂载了一个 GPT + notion,很多场景下可以重写扩写,若您感兴趣可自行查询官网了解它的更多用法。
2024-09-26
可以给你一个文本,你模仿它的框架,但是主题换一个,你可以做到吗
可以做到。您请给出新的主题,我会按照要求进行模仿创作。
2024-09-06
一键翻译图片可以做到吗
目前的技术还无法直接一键翻译图片中的内容。图片中的信息需要先通过图像识别技术转换为文字,然后再对这些文字进行翻译。图像识别和文字翻译这两个过程都需要特定的算法和模型支持,并且存在一定的准确性和局限性。但随着 AI 技术的不断发展,未来可能会出现更加便捷和高效的图片翻译方法。
2024-09-05