Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有没有对话形式,生成测试用例的ai

Answer

以下是一些关于对话形式生成测试用例的 AI 相关信息:

  • 生成式 AI Studio 中,您可以在聊天框中键入请求,例如“我的电脑速度很慢”,然后按回车键,查看 AI 如何响应,并且可以集成到您的应用程序。
  • 在一泽 Eze 的样例驱动的渐进式引导法中,可以借助擅长扮演专家角色的 AI 如 Claude 3.5 进行对话来改进初始的正向样例,输入初始指令后查看 AI 的回复,以侧面印证其对样例的理解与建议。
  • 在基于自然语言处理(NLP)的测试生成方面,Selenium IDE 结合 NLP 技术可从自然语言描述中生成自动化测试脚本,Cucumber 可通过解析自然语言描述生成测试用例。
Content generated by AI large model, please carefully verify (powered by aily)

References

9. 生成式 AI Studio 简介

您可以在聊天框中键入请求,例如“我的电脑速度很慢”,然后按回车键,查看AI如何响应。1.集成到您的应用程序

一泽 Eze:样例驱动的渐进式引导法——利用 AI 高效设计提示词 ,生成预期内容

单凭个人努力,想独自产出一个高质量的样例并非易事。就如我在构建上面的初始样例后,不确定它与优秀的知识卡片还有多大差距。幸运的是,我们可以借助擅长扮演专家角色的AI来改进初始的正向样例。我选择使用Claude 3.5进行对话(读者也可以尝试GPT-4等其他AI工具),输入以下的初始指令:以下是AI返回的内容:我们可以通过AI的回复,侧面印证AI当前对样例的理解与建议。

问:AI 做测试用例

Selenium IDE + NLP:结合NLP技术扩展Selenium IDE,从自然语言描述中生成自动化测试脚本。Cucumber:使用Gherkin语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

Others are asking
请提供一个提供办公效率的AI及其网址和使用教学
以下为您提供一些能提高办公效率的 AI 及其网址和使用教学: 邮件写作 AI 工具: 1. Grammarly: 功能:提供语法检查、拼写纠正、风格建议和语气调整等功能。 优点:易于使用,支持多种平台(如浏览器扩展、桌面应用、手机应用),适用于多种语言。 网站:https://www.grammarly.com/ 2. Hemingway Editor: 功能:简化句子结构,提高可读性,标记复杂句和冗长句。 优点:界面简洁,重点突出,适用于改善写作风格和简洁性。 网站:http://www.hemingwayapp.com/ 3. ProWritingAid: 功能:全面的语法和风格检查,提供详细的写作报告和建议。 优点:功能强大,支持多种平台和集成,特别适合专业写作者。 网站:https://prowritingaid.com/ 4. Writesonic: 功能:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等。 优点:生成速度快,适合需要快速创作和灵感的用户。 网站:https://writesonic.com/ 5. Lavender: 功能:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。 优点:专注邮件领域,提供具体的改进建议和实时反馈。 AI 视频工具: 1. Runway: 网址:https://runwayml.com 优势:有网页有 app 方便 教程: 2. 即梦: 网址:https://dreamina.jianying.com/ 优势:剪映旗下,生成 3 秒,动作幅度有很大升级,最新 S 模型,P 模型 教程: 3. Minimax 海螺 AI: 网址:https://hailuoai.video/ 优势:非常听话,语义理解能力非常强 教程: 4. Kling: 网址:kling.kuaishou.com 优势:支持运动笔刷,1.5 模型可以直出 1080P30 帧视频 教程: 5. Vidu: 网址:https://www.vidu.studio/ 6. haiper: 网址:https://app.haiper.ai/ 7. Pika: 网址:https://pika.art/ 优势:可控性强,可以对嘴型,可配音 教程: 8. 智谱清影: 网址:https://chatglm.cn/video 优势:开源了,可以自己部署 cogvideo 教程: 9. PixVerse: 网址:https://pixverse.ai/ 优势:人少不怎么排队,还有换脸功能 教程: 10. 通义万相: 网址:https://tongyi.aliyun.com/wanxiang/ 优势:大幅度运动很强 教程: 11. luma: 网址:https://lumalabs.ai/ AI 办公设备管理系统: 联想设备管理平台: 网址:未提及 功能:借助 AI 和物联网技术,对企业的办公设备进行管理,包括设备状态监测、故障预警、软件更新等。例如当打印机墨盒快用完时,系统会自动提醒并安排更换,提高设备的使用效率。 AI 美容护肤机构推荐平台: 新氧 APP: 网址:未提及 功能:利用 AI 分析用户的需求和地理位置,为用户推荐附近的优质美容护肤机构。比如用户想做皮肤护理,APP 会根据用户的评价和机构的服务项目,推荐合适的机构。 AI 儿童教育机构推荐平台: 大众点评亲子频道: 网址:未提及 功能:通过 AI 技术根据家长的需求和孩子的年龄,为家长推荐合适的儿童教育机构。例如家长想为孩子找一家英语培训机构,APP 会根据机构的口碑和课程设置进行推荐。 AI 汽车销售平台: 汽车之家车商城: 网址:未提及 功能:利用 AI 分析用户的购车需求和预算,为用户推荐合适的汽车品牌和车型。例如用户想买一辆家用 SUV,平台会根据用户的需求推荐性价比高的车型,并提供购车优惠和金融服务。
2025-02-05
AI入门
以下是为您提供的 AI 入门的相关指导: 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 选择感兴趣的模块深入学习: AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试: 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品做出自己的作品,在知识库中有很多大家实践后的作品和文章分享,欢迎您在实践后也进行分享。 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,通过对话获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,May 在其公众号文章「」中分享了自己疯狂向 AI 提问从而入门的经历。还有为不会代码的朋友准备的「写给不会代码的你:20 分钟上手 Python+AI」,能让您在 20 分钟内循序渐进地完成一个简单程序、一个爬虫应用(抓取公众号文章)和一个 AI 应用(为公众号文章生成概述)。
2025-02-05
抖音直播间ai自动回复
以下是关于抖音直播间 AI 自动回复的相关知识: 在当下的 AI 产品中,大都支持自定义 AI 的回复方式。例如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”。设定“人设与回复逻辑”时,这里的写法就是 Prompt,您可以足够相信 AI 的智商,无论怎么写,它一般都能理解,但以下仅供参考,您可以自由发挥。 目标是尝试输入某个 AI 产品的网址,如:https://www.anthropic.com/news/introducingclaude ,AI 会自动处理并返回这个产品的名称、简介等信息。 测试“人设与回复逻辑”时,尝试输入网址:https://www.anthropic.com/news/introducingclaude ,也就是 Claude 的介绍信息页,AI 就会按照预先设定的格式进行返回。但由于 AI 的特性,它并不总能返回合适的结果。处理这种情况的方法有很多,比如重试、优化 Prompt 或者使用 Workflow(这个后面讲)。 另外,在【AI+知识库】商业化问答场景中,大语言模型就像一个学习过无数本书、拥有无穷智慧的人,对公共知识、学识技能、日常聊天十分擅长。提示词则是告诉这个全知全能的人,他是一个什么样的角色、要专注于哪些技能,让他能够按照您的想法,变成一个您需要的“员工”。知识库相当于给这个“聪明”员工发放的一本工作手册,例如设定使用阿里千问模型,角色是“美嘉”,知识库放的是《爱情公寓》全季的剧情,这样当您提问时,AI 就能根据设定和知识库进行回复。
2025-02-05
文生视频的 AI 能力
以下是关于文字生成视频的 AI 能力的相关信息: 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:可在 Stable Diffusion 图片基础上直接生成视频,是 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 (内容由 AI 大模型生成,请仔细甄别) 对于视频模型的评估,可从以下方面全面评估 AI 视频生成模型的各种能力: |测试类型|提示词(Prompt)| ||| |生成质量|“A highresolution 4K video of a sunset over the ocean with smooth transitions.”| |生成速度|“A short 10second clip of a running dog in a park.”| |一致性|“A person walking from left to right across the screen with consistent motion and background.”| |多样性|“A fantasy world with dragons flying in the sky and wizards casting spells.”| |可控性|“Generate a video of a beach scene with a setting sun and seagulls flying,with the ability to change the weather from sunny to cloudy.”| |音频生成|“A video of a thunderstorm with synchronized sound effects of thunder and rain.”| |界面友好度|“Test the user interface by generating a video of a mountain landscape with easytouse controls for adjusting the time of day and weather conditions.”| |可定制性|“Create a video of a city street with customizable options for the number of people,types of vehicles,and time of day.”| |计算资源|“Generate a 30second video of a busy market scene and measure the CPU,GPU,and memory usage.”| |运行成本|“Produce a 2minute educational video on the water cycle,evaluating the cost efficiency for longer videos.”| |错误处理|“Generate a video with an incomplete prompt to test how the model handles missing information.”| OpenAI 发布的首款文生视频模型 Sora 具有强大的能力,不仅能根据文字指令创造逼真且充满想象力的场景,还能生成长达 1 分钟的超长视频,且一镜到底。在视频中的女主角、背景人物等方面都达到了惊人的一致性,各种镜头随意切换,人物保持了神一般的稳定性。相比之下,Runway Gen 2、Pika 等 AI 视频工具在几秒内的连贯性方面还有待突破。
2025-02-05
用户运营AI
以下是关于用户运营 AI 的相关内容: AI 技术的发展对职业形态有巨大影响,但技术进步是不可逆的趋势。对于新媒体运营和用户运营,AI 虽能在某些方面提供帮助,如生成文章和解决单点问题,但在内容创新、创造力、了解人性需求和制定策略方面,人类仍具有优势。 以新媒体运营为例,其核心竞争力在于内容的创新和创造力,AI 生成的文章缺乏创造性和人情味。对于用户运营,AI 能胜任客户服务和解决单点问题,但在了解人性需求变化并制定相应策略上存在难题。 在人工智能时代,我们应重点提升以下能力: 1. 提升提问技巧:在信息泛滥的时代,高质量的问题更重要。提问反映思考方式和能力,通过独立思考,向 ChatGPT 等工具提出优质问题,以获得满意答案。 2. 培养学习方法:面对无尽知识,要提高学习能力和效率,掌握正确的学习方法以事半功倍。 此外,在开源 AI 社区中,可利用社群运营机器人实现知识库问答和定时推送等功能。通过将社区积累的文章和资料喂给机器人学习,它能通过 RAG 机制匹配用户问题给出准确稳定的答案,还能给出延伸阅读链接鼓励用户主动学习。同时,机器人可定时推送活动信息和社区动态,提高通知的准确性和及时性。
2025-02-05
目前用的最多的Ai工具都有哪些
目前使用较多的 AI 工具包括以下几类: 1. 文章润色工具: Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 Wordtune:AI 驱动的文本改写和润色工具,帮助优化文章的语言表达。 Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 2. 论文写作相关工具: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议。 Quillbot:基于 AI 的重写和摘要工具,帮助精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 3. 适合软件项目经理的工具: 项目管理和任务跟踪工具:如 Jira、Trello 等已开始集成 AI 功能,辅助制定计划、分配任务、跟踪进度等。 文档和协作工具:微软的 Copilot 集成到 Office 套件中,提供 AI 助手功能;云存储服务如 Google Drive 也提供 AI 驱动的文档管理和协作功能。 风险管理和决策支持工具:帮助识别和分析项目风险,并提供决策建议。 沟通和协作工具:AI 助手辅助进行团队沟通协调、客户关系维护等。 创意生成工具:如文心一格、Vega AI 等,帮助快速生成创意图像素材。
2025-02-05
如何高效的编写软件测试用例
以下是关于如何高效编写软件测试用例的方法: 1. 基于规则的测试生成 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例 Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 6. 工具和平台 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2025-01-22
那么有什么工具吗可以生成测试用例吗
以下是一些可以生成测试用例的工具: 1. 基于规则的测试生成: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 在实践中的应用示例包括: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-09
可以实现测试用例设计、测试脚本、测试执行、测试报告 的AI 有哪些?
以下是一些可以实现测试用例设计、测试脚本、测试执行和测试报告的 AI 工具和方法: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2024-10-24
我想基于一个开源模型,训练一个自己的AI模型,用于编写软件测试用例,如何实现呢
要基于开源模型训练一个用于编写软件测试用例的 AI 模型,您可以参考以下步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖软件测试用例的相关场景,同时准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对编写软件测试用例的目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,训练这样一个模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-23
有没有免费好用的,用于生成测试用例的ai
以下是一些免费好用的用于生成测试用例的 AI 工具: Testim:AI 驱动的自动化测试平台,可生成和管理测试用例,适用于 Web 应用测试,能分析用户行为和日志数据,自动生成高覆盖率的测试用例以检测不同浏览器和设备上的兼容性问题。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用,可从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试,如采用其基于系统状态模型生成测试用例,可确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。
2024-08-14
我是一名测试,经常需要写测试用例,有没有相关的助手
以下是一些可用于生成测试用例的 AI 工具和平台: 1. Testim:这是一个 AI 驱动的自动化测试平台,能够生成和管理测试用例。它可以通过分析文档和用户故事自动生成测试用例,减少人工编写时间。在 Web 应用测试中,它能分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。它可以利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。在移动应用测试中,能从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. DeepTest:利用深度学习生成自动驾驶系统测试用例。 4. GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。在复杂系统测试中,能基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 5. Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2024-08-14
waytoagi知识库的对话功能是如何开发的
waytoagi 知识库的对话功能开发涉及以下方面: 1. 提示词的运用:建议从最佳实践中的收录内容开始了解,像李继刚老师的结构化提示词很有意思,使用此类提示词能让模型给出更优质、完整的答案。操作过程中有很多有趣的提示词,如“酷老师”“抬杠高手”等,可点开并复制,将其丢进大源模型对话会有不同效果。近期提示词有升级,李金刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 2. 基于飞书 aily 搭建:在飞书 5000 人大群里内置了智能机器人「waytoAGI 知识库智能问答」,它能自动问答、进行知识搜索、提供文档引用、开展互动教学、更新最新动态、促进社区互动、实现资源共享以及支持多语言问答。用户在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 3. 解决知识库使用问题:整个知识库内容庞大,传统搜索基于关键词及相关性存在不足,需要用更先进的办法如 RAG 技术来解决,在群中提供快速检索信息的方式,使用更加便捷。
2025-01-28
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
对话流的作用
对话流在不同的场景中具有多种作用: 在与律师相关的场景中,其工作流设计要点包括: 有独特的欢迎语,如“十方诸天尊,其数如沙尘,化形十方界,普济度天人。灵机应召来也!”,能改善心理状态,还可根据需求灵活变化。 设计了检查环节,若觉得不对劲偏离要求,可通过“守符诏令”指令重新发挥效力。 采用对话式、分模块每次确认的形式,最终生成质量往往更高。 请用户检查写作方案是否符合要求,重点关注操作建议的具体性、清晰性和对实际解决问题的帮助,若不满意会重新生成。若满意则进一步深化写作,每次对话输出文章的一个部分。 在 Coze 平台中,工作流是核心概念,它是一系列有序的任务或操作,用于完成特定的业务流程。适用场景广泛,如多步骤任务、插件调用、数据处理等。通过可视化方式将不同功能模块串联,可更直观地设计和管理复杂任务,提高开发效率和系统可维护性。创建工作流一般建议直接在 bot 里新建,若创建的工作流不见了,可在首页工作空间资源库工作流中查找。 在 LangGraph 中,构建图时从一个节点开始,用用户当前信息预填充状态。每个小工作流程包含 5 个节点:enter_、助手、_safe_tools、_sensitive_tools、leave_skill。由于工作流程相似,本可定义工厂函数生成,但教程中会逐一明确定义,如创建航班预订助手、租车助手、酒店预订、旅行预订助手和主助手等工作流程图。
2025-01-18
对话框架都有哪些
以下是一些常见的对话框架: 1. 智谱·AI 开源模型列表中的 Chat 模型框架: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景,上下文 token 数为 8K。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样训练数据、更充分训练步数和更合理训练策略,在 10B 以下基础模型中性能最强,上下文 token 数为 8K。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 基础上强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32k:第二代 ChatGLM 长上下文对话模型,在 ChatGLM26B 基础上进一步强化长文本理解能力,能处理最多 32K 长度上下文。 ChatGLM26B32kint4:ChatGLM26B32K 的 int4 版本。 ChatGLM6B:第一代 ChatGLM 对话模型,支持中英双语,基于 General Language Model架构,具有 62 亿参数,结合模型量化技术可在消费级显卡上本地部署,上下文 token 数为 2K。 2. COSTAR 框架: 定义:指明文本的整体风格,包括词汇选择、句式结构及可能的参照对象。 重要性:不同风格适合不同场合,如学术论文和社交媒体帖子。 示例:科学论文需正式语言和客观语气,博客文章可采用轻松、个人色彩写作风格。 Tone(语气) 定义:设定文本的情感基调,确保符合预期氛围。 重要性:正确语气可建立与读者联系,传达适当态度。 示例:商业计划书需正式、专业且有说服力语气,产品评测可采用轻松幽默语气。 Audience(受众) 定义:明确回答或文本的目标读者。 重要性:了解受众有助于调整语言复杂度、术语使用及整体信息传递方式。 示例:专业人士可用行业术语和复杂概念,大众需简化语言避免专业化术语。 Response(回复) 定义:指定最终输出的形式和结构。 重要性:正确格式使信息更易理解和消化。 示例:详细分析报告按标准报告格式组织,简单问答可直接列表呈现答案。
2025-01-14
如何利用多轮对话做Agent问答
利用多轮对话做 Agent 问答可以从以下几个方面考虑: 1. 从产品角度: 思考用户为何想使用,例如通过探索历史新闻让用户更好地了解自身背景、成长环境,从中学习成长并获得有趣互动体验。 明确 Agent 是谁及其性格,比如设定为知识渊博、温暖亲切、富有同情心的历史新闻探索向导,负责新闻解析和历史背景分析。 确定提供新闻的时间,如用户出生那天及那一周的重要新闻事件。 规划除新闻外的能力,如提供历史背景分析、相关画作、生活方式分析,甚至加入神秘主义者和心理学家角色回应用户。 设计多 Agent 出场顺序和使用方式,通过多角色互动设计,让用户体验多层次对话,从基本问答到深度讨论,逐步引导用户探索。 2. 基于 LLM 的大脑模块: 自然语言交互方面:LLM 应具备多轮对话能力,能理解自然语言并生成连贯、上下文相关的回复,还应具备出色的生成能力和意图理解能力,但要注意模糊指令可能带来的挑战。 知识方面:包括语言知识(词法、句法、语义学和语用学)、常识知识(如药和伞的用途)、专业领域知识(如编程、医学),但要注意知识可能过时或错误,需通过重新训练或编辑 LLM 解决。 记忆方面:具备记忆机制,存储过去的观察、思考和行动,通过提高输入长度限制、记忆总结、用向量或数据结构压缩记忆等策略提升记忆,Agent 能检索记忆以访问相关信息,包括自动检索和交互式记忆对象。 推理和规划方面:基于证据和逻辑进行推理,这对解决问题和决策至关重要。
2025-01-08
是不是可以跟任何大模型进行对话
一般来说,可以跟很多大模型进行对话。以下是一些常见的方式: 1. 对于 Llama3 大模型: 下载大模型主要是为了与之对话,或者称为使用其进行推理。 有两种对话方式,可使用 API 或部署简单界面。面向小白,这里主要介绍部署界面的方式。 例如,在 /root/autodltmp 路径下新建 chatBot.py 文件并输入相关内容,然后启动 Webdemo 服务,按照指示映射端口,在浏览器中打开相应链接即可看到聊天界面。 2. 对于 Llama 大模型: 首先编译,为利用 Metal 的 GPU 可用特定命令编译。 去指定网址下载模型。 llama.cpp 还提供了 WebUI 供用户使用,启动 server 后默认监听 8080 端口,打开浏览器就可以对话。 3. 对于通过 Open WebUI 使用大模型: 访问指定网址,使用邮箱注册账号。 登陆成功后,Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。如果要求不高,已实现通过 Web UI 与本地大模型对话的功能。 需要注意的是,不同大模型的访问速度和回答效果可能存在差异,例如 ChatGPT 访问速度快是因为其服务器配置高,回答效果好是因为训练参数多、数据更优以及训练算法更好。
2025-01-07
有没有能够改LOGO颜色的AI?
以下是一些能够修改 LOGO 颜色的方法和相关的 AI 工具: 方法: 可以使用 Stable Diffusion 来修改 LOGO 颜色。但在使用过程中可能会出现颜色提示词相互污染、背景颜色不统一等问题。为解决这些问题,可以启用 cutoff 插件来进行控制。具体操作可参考文章——。 AI 工具: 1. Looka:是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个 Logo 设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,提供 Logo 设计服务,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助用户创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块,获取更多好用的工具:
2025-02-05
有没有实体门店做短视频怎么跟deep seek提问的模版
很抱歉,目前没有关于实体门店做短视频如何向 Deep Seek 提问的模板。但您可以从以下几个方面来构思您的问题: 1. 描述实体门店的特点和目标受众,例如门店的类型、位置、主要经营产品或服务,以及希望通过短视频吸引的客户群体特征。 2. 说明您对短视频的预期效果,比如是增加品牌知名度、促进销售还是提升客户参与度。 3. 提及您现有的资源和限制,比如预算、拍摄设备、人员技能等。 4. 阐述您对短视频内容和风格的初步想法,例如是搞笑、感人、实用教程还是其他类型。 5. 询问关于短视频的传播渠道和推广策略的建议。 希望以上思路能对您有所帮助。
2025-02-04
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
有没有什么做竞品调研方便的AI工具或智能体
以下是一些做竞品调研方便的 AI 工具或智能体: 1. 各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,它们颠覆了传统搜索引擎,智能摘要功能可辅助快速筛选信息。 2. 多智能体 AI 搜索引擎,其方案详情包括: 第一步,根据用户任务使用搜索工具如 API WebSearchPro 快速搜索补充参考信息,参考文档:https://bigmodel.cn/dev/api/searchtool/websearchpro 。 第二步,用大模型如 GLM40520 规划和分解子任务,并转换为 JSON 格式,参考 API 文档:https://bigmodel.cn/dev/api/normalmodel/glm4 及 JSON 工具:https://bigmodel.cn/dev/howuse/jsonformat 。 第三步,用搜索智能体如智能体 id 为 659e54b1b8006379b4b2abd6 的智能助手完成子任务,其能够联网搜索、自主分析并进行多轮搜索,参考文档:https://bigmodel.cn/dev/api/qingyanassistant/assistantapi 。 第四步,总结子任务生成思维导图,可调用智能体 id 为 664e0cade018d633146de0d2 的智能体,它能将复杂概念秒变脑图,参考文档:https://bigmodel.cn/dev/api/qingyanassistant/assistantapi 。 需要注意的是,每个人的工作流都是独特的,应先了解自己的日常工作流程,再根据工作节点线索找到适合自己的工具。
2025-02-01
我们有没有 ai 视频的社群呀
我们有 AI 视频的社群。 AI 视频学社是为方便大家测试学习 AI 视频相关知识和内容而建立的。学社有以下特点和活动: 学社简介:小伙伴们可以通过参与每周举办的比赛快速学习相关知识,每周还有高手直播分享前沿知识。 学社目标:不定期直播,有 AI 视频方向高手直播分享;每周固定 1 次 video battle 视频挑战赛;不定期组织线上或者线下活动;大家一起学习最新软件和知识,学习图生视频、视频生视频等技巧。 软件教程: 每周一赛: 入门方面:不熟悉 AI 视频的小伙伴请看 交流群方面:需要学习 AI 视频,参与 AI 视频挑战赛,参与 AI 视频提示词共创的小伙伴,直接扫二维码或联系三思或小歪【备注:AI 视频学社】,必须有 AI 视频账号才能进群,请勿随便申请好友。 此外,还有每周 1 次直播(周五直播),如:@lailai 统筹负责
2025-02-01
有没有关于deeppseek的相关文章?
以下是关于 DeepSeek 的相关文章: 1. 1 月 8 日:《》DeepSeek 是一家位于杭州的人工智能创业公司,其大语言模型 DeepSeekV3 在全球引发广泛关注。该模型以 550 万美元和 2000 块低配版英伟达 H800 GPU 训练,超越了多个顶级模型,获得硅谷研究者的高度评价。DeepSeek 的成功被视为中国式创新的典范,但其独特之处在于其更像一个研究机构,注重技术创新而非商业化运作,吸引了大量年轻的顶尖研究人才。 2. 1 月 28 日: 拾象:DeepSeek r1 闭门学习讨论|Best Ideas Vol 3,讨论了 DeepSeek 对全球 AI 社区的影响,包括技术突破、资源分配及其长上下文能力与商业模式。分析了中国在 AI 追赶过程中的潜力与挑战,探讨了创新路径及深远生态影响。 转:关于 DeepSeek 的研究与思考 3. 1 月 30 日:《》阐述了 DeepSeek 省钱的原因,包括高效硬件使用、创新训练方法、高效模型压缩、避免无效尝试等,还提及成本对比及创新蒸馏技术。接着从核心思想、技术实现方式(知识表示、温度调节)、训练过程(基本流程、关键点)、DeepSeek 的创新及有效性原因(信息压缩、概率分布学习、泛化能力)等方面详细讲述了蒸馏工作原理。
2025-02-01