Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stable diffusion需要的电脑配置

Answer

为了顺利安装和使用 Stable Diffusion(简称“SD”),您需要先查看自己的电脑配置,注意以下两点:

  1. 电脑系统:应为 Win10 或者 Win11,避免使用更低版本的系统。查看方法为在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。
  2. 电脑性能:
    • 电脑运行内存应在 8GB 以上。检查方法为:鼠标右击桌面底部任务栏,点击“任务管理器”,在“性能”里面找到“内存”,只要看图中划线的那一个参数即可。8GB 勉强达到标准,16GB 可以正常使用,32GB 则能非常自由地使用 SD。
    • 应是英伟达(俗称 N 卡)的显卡,显卡内存在 4GB 以上。检查方法为:在“任务管理器”中查看“GPU”,GPU 即显卡。

另外,带动 SD 推荐的电脑配置为:电脑运行内存 16GB 以上,英伟达显卡,显卡内存 8GB 以上。同时打开任务管理器的方式为同时按下 ctrl+shift+esc。

Content generated by AI large model, please carefully verify (powered by aily)

References

教程:超详细的Stable Diffusion教程

为了大家能够更加顺利的安装和使用Stable Diffusion(简称“SD”)在正式安装之前希望大家先一起查看一下自己的电脑配置,需要注意的是以下两点:01.电脑系统是Win10或者Win11为了避免一些奇怪的兼容性问题,不要选择更低版本的系统。查看电脑系统的方法:在桌面上找到“我的电脑”——鼠标右键点击——点击“属性”——查看Windows规格02.检查电脑性能这里是检查自己的电脑配置能不能带动SD(Stable Diffusion)需要满足3个要求:电脑运行内存8GB以上是英伟达(俗称N卡)的显卡显卡内存4GB以上检查方法:①鼠标右击桌面底部任务栏——点击“任务管理器”②查看电脑的运行内存在“性能”里面找到“内存”,这里的内存不是电脑的存储内存,而是运行内存噢!只要看图中划线的那一个参数就可以8GB:那就说明你的电脑配置内存是勉强达到标准的16GB:那就说明你的内存配置可以正常使用32GB:那么你就可以非常自由的使用SD啦!③查看“GPU”GPU就是显卡的意思首先先看右上角显卡的名字或者型号

0. SD的安装

这里是检查自己的电脑配置能不能带动SD(Stable Diffusion)需要满足3个要求(推荐):电脑运行内存8GB以上是英伟达(NVIDA)的显卡显卡内存4GB以上①打开任务管理器:同时按下ctrl+shift+esc②查看电脑运行内存8GB运行内存可以勉强运行SD推荐16GB以上运行内存③查看电脑显卡内存(显存)4GB显存可运行SD,推荐8GB以上显存

【SD】抽卡必备!时间管理大师Agent Scheduler

Stable Diffusion是一个抽卡游戏,氪金大佬往往都拥有比较高端的电脑配置,十连抽、二十连抽什么的都不在话下,抽中心仪的SSR角色的成功率自然也要大得多。说到抽卡,那肯定要用不同的模型、参数、提示词来做测试,不然一个不好的指令,你就是抽一千张也未必出得了一张好图。我们以往做测试呢,大家一定用到的都是“X/Y/Z plot”脚本,可以在不同的参数之间做横向对比,很直观。但是呢,大家想象一下这样一个使用场景:我有4到5个不同的模型要进行测试,然后每一个里面角色的提示词也不同,还要使用不同的controlnet来控制,参数也要有相应的变化。这么复杂的测试,你告诉我,用脚本怎么来完成?如果自己手动一张一张的测,又要做到何年何月?连罗志祥来了都要愁到头秃。当然,我们有办法!今天要介绍的这款插件,就是一位SD中的时间管理大师,能够将我们的测试任务安排得井井有条,它就是——Agent Scheduler安装方式就是在扩展面板中搜索“Agent Scheduler”,或者是点击“从网址安装”,然后输入以下地址https://github.com/ArtVentureX/sd-webui-agent-scheduler,可以直接安装。安装之后重启,我们首先就可以看见“生成”下面,多了一个“排队”的按钮。

Others are asking
用这些AI工具电脑配置
以下是一些使用 AI 工具时可能需要的电脑配置相关信息: Garman:AI 具身对话机器人 硬件组装:需要一台电脑和一台 iPhone,安卓目前不支持。 工具准备:剪刀、钳子、小十字螺丝刀、单面胶、双面胶。 数据线:优先推荐双头 TYPEC 数据线,其次是 USB TYPEC 数据线,多备几条,注意充电线不一定是数据线,要确保可传输数据。 这不是一台电脑,这是一个伴侣! 开发者工具: 个性(LLM 的文本):一些开源模型(如 Vicuna 和 Pygmalion)已微调,适用于各种应用场景。 记忆(向量存储):像 Pinecone 这样的向量存储系统可建立持续关系,配置代码存储长期记忆等信息。 语音(语音合成):像 ElevenLabs 这样的产品可赋予声音,控制年龄、性别和口音。 外表(SD 模型作图):LoRAs 可精细控制图像风格等。 动画(视频动画):像 DID 和 HeyGen 这样的工具可使图像“说话”。 平台:大多数开发者在 GCP 和 AWS 上部署和运行,像 Steamship 这样的解决方案正受关注。 UI 层:SillyTavern、Agnaistic 和 KoboldAI 是受欢迎的选择。 绘制逻辑视图、功能视图、部署视图的工具 Lucidchart:流行的在线绘图工具,支持多种图表创建。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用。 Enterprise Architect:强大的建模、设计和生成代码工具。 Microsoft Visio:广泛使用的图表和矢量图形应用程序。 draw.io(diagrams.net):免费在线图表软件。 PlantUML:文本到 UML 转换工具。 Gliffy:基于云的绘图工具。 Archi:免费开源工具,支持创建 ArchiMate 和 TOGAF 模型。 Rational Rose:IBM 的 UML 工具。
2024-11-30
AI视频需要什么 电脑配置
制作 AI 视频通常需要以下方面的准备和配置: 1. 内容准备: 准备一段视频中播放的文字内容,例如产品介绍、课程讲解、游戏攻略等。可以自行创作,也可以利用 AI 生成。 2. 视频制作工具: 可以使用剪映 App 对视频进行简单处理,电脑端打开剪映 App 点击“开始创作”,选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号为视频添加文字内容轨道。 3. AI 换脸方面: 有多个 AI 产品可实现换脸效果,如开源免费的 facefusion。 本机解决方案需要 Python 环境、安装视频解码器等多个依赖软件,对 GPU 依赖较大,本地计算机若无 GPU 或 GPU 显存较小,执行速度缓慢,不推荐本地化安装。 云服务解决方案可利用云厂商如阿里云的 PAI 和 AutoDL 提供的大模型运行环境和计算能力,但会产生一定费用。例如选择 AutoDL,在算力市场中选取能接受价格且 GPU 配置更高的算力设备,并通过模型镜像启动 GPU 服务器。
2024-09-24
使用开源大模型本地化部署使用电脑配置,推荐几款笔记本电脑
以下是关于使用开源大模型本地化部署所需电脑配置及笔记本电脑推荐的相关信息: 运行大模型需要较高的机器配置,个人玩家大多负担不起。以下是不同类型大模型的配置要求: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 对于本地化部署,不建议使用最低配置,因为速度会非常慢。例如,用 8G 的 Mac 电脑尝试过,效果不佳。 由于本地化部署对电脑配置要求较高,不太推荐本地化安装实现。如果想使用开源大模型,可选择利用云厂商已提供好的大模型运行环境和计算能力,比如阿里云的 PAI 和 AutoDL。 在笔记本电脑选择方面,建议选择具备以下配置的机型: 1. 内存:16GB 及以上的 RAM。 2. 显卡:具有 8GB 及以上 VRAM 的独立显卡。 但具体的笔记本电脑型号还需根据您的预算和其他需求来确定。
2024-09-12
安装 SD 电脑配置
安装Stable Diffusion对电脑配置有一定的要求,主要是为了确保能够顺利运行AI绘画模型并生成高质量的图像。以下是安装Stable Diffusion所需的基本电脑配置要求: 1. 显卡:需要使用NVIDIA显卡,因为Stable Diffusion主要依赖CUDA进行GPU加速。推荐的显卡配置从NVIDIA GeForce GTX 1070起,或NVIDIA Quadro P4000起。 2. 显存:最低配置需要4GB显存,基本配置6GB显存,推荐配置12GB显存或者以上。显存越大,可设置的图片分辨率越高,且能处理更复杂的图像生成任务。 3. 操作系统:需要是Windows 10或Windows 11。对于Mac用户,虽然可以使用CPU进行渲染,但速度会比较慢,因此推荐使用配备NVIDIA显卡的Windows电脑。 4. 硬盘空间:建议有60GB以上的硬盘空间,因为Stable Diffusion的模型文件通常较大,且批量生成图像会占用较多存储空间。 5. 内存:虽然没有具体要求,但为了保证运行流畅,建议有8GB以上的内存。 6. Python环境:Stable Diffusion是基于Python搭建的,因此需要在电脑上安装Python环境。建议安装3.10.6版本,这是Stable Diffusion WebUI作者推荐安装的版本。 7. Git:用于从GitHub上安装和更新Stable Diffusion及其插件。 8. Docker:如果选择使用Docker部署Stable Diffusion,需要在系统上安装Docker Desktop。 请注意,具体的配置要求可能会根据Stable Diffusion的版本和使用的具体功能有所不同。如果使用云端服务或在线工具,对本地电脑配置的要求会降低,因为大部分计算会在云端完成。
2024-05-01
stablediffusion学习
以下是关于系统学习 Stable Diffusion(SD)的相关内容: 学习 SD 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 SD 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-16
有什么AI模型可以制作瞬息宇宙?比如Stable Diffusion,还有别的吗?
以下是一些可以用于制作类似效果的 AI 模型: 1. Adobe Firefly:内置在各种 Adobe 产品中,不过在质量方面稍逊于 DALLE 和 Midjourney,但它只使用有权使用的图像进行训练。 2. Stable Diffusion:开源模型,可以在任何高端计算机运行。开始时需要学会正确制作提示,一旦掌握能产生很好的结果,尤其适合将 AI 与其他源的图像结合。 3. DALLE:来自 OpenAI,已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠但效果比 Midjourney 稍差。 4. Midjourney:2023 年中期最好的系统,学习曲线最低,只需键入特定指令就能得到很好的结果,需要 Discord。 此外,在游戏制作领域,已经出现了用于游戏中几乎所有资产的生成式人工智能模型,从 3D 模型到角色动画,再到对话和音乐。但文中未提及具体的模型名称。
2025-01-10
stable diffusion和国内的这些AI绘画的模型有什么区别
Stable Diffusion 和国内的 AI 绘画模型主要有以下区别: 1. 数据集和学习方式: 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。 2. 计算能力: 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。 3. 模型更新: 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。 4. 协同学习: 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。 例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。
2025-01-08
Stable Diffusion 学习教程
以下是关于 Stable Diffusion 学习的教程: 学习提示词: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 核心基础知识: 1. Stable Diffusion 系列资源。 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理,包括通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍。 3. Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析。 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、生成示例。 5. Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括训练资源分享、模型训练初识、配置训练环境与训练文件。 其他资源: 1. 了解 Stable diffusion 是什么: 。 2. 入门教程: 。 3. 模型网站:C 站 。 4. 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。
2025-01-06
Stable Diffusion、comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer。它具有以下特点: 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 丰富(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 其生图原理如下: 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等。 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,以捕捉文本的语义信息。 Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声和逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。 官方链接:https://github.com/comfyanonymous/ComfyUI (内容由 AI 大模型生成,请仔细甄别)
2025-01-06
社区有关于stable diffusion 的教程吗
以下是为您找到的关于 Stable Diffusion 的教程: 知乎教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识,目录包括: Stable Diffusion 系列资源 零基础深入浅出理解 Stable Diffusion 核心基础原理,包含通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍 Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、Stable Diffusion 生成示例 Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括 Stable Diffusion 训练资源分享、模型训练初识、配置训练环境与训练文件 其他教程: 了解 Stable diffusion 是什么: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 稳定扩散(Stable Diffusion)是如何运作的:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 入门教程: 文字教程: 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ
2025-01-04
怎么学习Midjourney和stable defussion
以下是关于学习 Midjourney 和 Stable Diffusion 的一些建议: Midjourney: 优势:操作简单方便,创作内容丰富,但需要科学上网并且付费,月费约 200 多元。若只是前期了解,可先尝试。 学习途径:只需键入“thingyouwanttoseev 5.2”(注意末尾的v 5.2 很重要,它使用最新的模型),就能得到较好的结果。Midjourney 需要 Discord,可参考。 Stable Diffusion: 优势:开源免费,可以本地化部署,创作自由度高,但需要较好的电脑配置,尤其是显卡。 学习途径: 关于具体的安装方法可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。 可以参考,了解其工作原理和基本功能。 如果走 Stable Diffusion 这条路,这里有一个很好的指南(请务必阅读第 1 部分和第 2 部分) 此外,在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如可以用 Midjourney 生成线稿,PS 稍微做一些修正,再用 ControlNet 控制,Stable Diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。
2025-01-06
我是一名小说家,需要ai帮助
以下是关于小说家利用 AI 进行小说创作的相关内容: 南瓜博士在人机协作小说创作中有着丰富的经历。除了无名猫视角的获奖作品,还为 LLM 小说比赛尝试了多种方法,包括编写 agent flow 框架让 AI 自动按步骤写作和评判,但因无法认同 AI 的审美而放弃。之后选择在 GPT 页面上对话,先让 AI 生成大量创意,自己进行判断挑选,写作时 AI 勤勤恳恳,自己负责掌舵,最后给出改进意见由 AI 遵循修改。 在具体创作过程中,为确保文章前后一致,先让 AI 写故事概要和角色背景介绍并略作修改。让 AI 以表格形式输出细节描述有三个好处:打破叙事习惯避免陈词滥调;按编号做局部调整容易;确保内容都是具体细节。然后把生成的表格依次复制粘贴让 AI 写文章,偶尔需要自己给建议。 在修改环节,小说大赛要求作品不能改动且不能超 2000 字,让 GPT4 改时它很快暴露出记性不好的缺点,求助 Claude 时关键情节被改没。总之,小说创作中,人有人的用处。
2025-01-23
我是一个AI小白,想系统学习AI,实现的目标是成为AI领域小能手,如果能用于变现则更好,我需要从什么开始学习,周期大概是多少?适合做哪些变现的项目呢
对于您这样的 AI 小白,想要系统学习 AI 并实现成为领域小能手甚至变现的目标,以下是一些建议: 1. 学习模式:可以采用输入→模仿→自发创造的模式。先广泛输入知识,然后进行模仿,最后尝试自发创造。 2. 学习内容:去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。但要注意,一些旧的学习材料可能已经不适用。 3. 时间安排:学习时间不必每天依次进行,可以在有空的时候学习。 4. 学习状态:保持良好的学习状态,有意愿和动力去学。 5. 费用方面:学习资源大多是免费开源的。 新手学习 AI 可以这样做: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 学习周期因人而异,取决于您的学习时间投入、学习效率和理解能力等因素。 关于变现项目,比如可以尝试用 GPT 和 SD 制作图文故事绘本、小说推文等,但要注意项目可能存在的不确定性。
2025-01-23
我需要一个能帮助写年终报告的AI
以下是一些关于利用 AI 帮助写年终报告的信息: 在金融服务业中,生成式 AI 能够帮助金融服务团队改进内部流程,简化财务团队的日常工作。它可以从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,在预测方面,能帮助编写公式和查询,发现模式并为预测建议输入;在报告方面,能自动创建文本、图表等内容,并根据不同示例调整报告。此外,在会计和税务、采购和应付账款方面也能提供帮助,如综合总结税法和潜在扣除项,自动生成和调整合同等。 安迪分享了一个实战案例,通过将过去写的文章发给 AI 总结写作特点,编写提示词来克隆自己的写作风格,从而让 AI 代替自己写“手写信”,大大提高了效率。 对于个人博客,在接触 AI 之前输出困难,而 AI 提供了不同的思路和视角,让写作变得可执行可操作。当 AI 能在几分钟内生成详细报告时,能节省大量时间和精力。但在与 AI 合作中也会面临一些问题,如如何掌控 AI 使其成为得力助手,如何应对超出理解范围的解决方案等。
2025-01-22
制作ai视频都需要用到哪些工具
制作 AI 视频通常需要用到以下工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 此外,制作 AI 视频还需要考虑故事的来源和剧本写作。故事来源可以是原创(如个人或周围人的经历、梦境、想象的故事等),也可以是改编(如经典 IP、名著、新闻、二创等)。剧本写作方面,虽然有一定门槛,但可以从自身或朋友的经历改编入手,多与他人讨论并不断实践总结。在生成视频画面时,可能需要大量抽卡来获取合适的画面。比如在科幻片、战争片、奇幻片等不同类型的视频中,通过不同的工具生成相应的画面。
2025-01-21
ai虚拟人物和真实视频融合需要用到哪些工具
AI 虚拟人物和真实视频融合可能会用到以下工具: 1. HeyGen:这是一个 AI 驱动的平台,能创建逼真的数字人脸和角色,使用深度学习算法生成高质量肖像和角色模型,适用于游戏、电影和虚拟现实等。 2. Synthesia:AI 视频制作平台,允许创建虚拟角色并进行语音和口型同步,支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 3. DID:提供 AI 拟真人视频产品服务和开发,只需上传人像照片和输入内容,平台的 AI 语音机器人会自动转换成语音并合成逼真的会开口说话的视频。 此外,还有 Pika、Pixverse、Runway、SVD 等工具。Pika 对奇幻感强的画面把控较好,但真实环境画面易糊,新的唇形同步功能需抽卡;Pixverse 在高清化方面有优势,对特定物体移动的画面友好,但生成视频有帧率问题;Runway 在真实影像质感方面表现最佳,但爱变色且光影不稳定;SVD 整体表现略差,仅在风景片测试中表现较好。在实际使用中,可根据不同工具对画面的处理能力进行组合使用。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会变化,使用时请遵守相关条款和政策,并注意版权和伦理责任。
2025-01-21
需要根據網站內容自己生成廣告影片
如果您想根据网站内容自己生成广告影片,可以参考以下步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 实战方面: 1. 准备内容:先准备一段视频中播放的内容文字。内容可以是产品介绍、课程讲解、游戏攻略等任何您希望推广,让大家了解的文字。也可以利用 AI 来生成这段文字。 2. 制作视频:使用剪映 App 来对视频进行简单的处理。电脑端打开剪映 App,点击“开始创作”。选择顶部工具栏中的“文本”,并点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。添加完成后,在界面的右侧将准备好的文字内容替换默认文本内容。 另外,还有以下相关的创意解决方案: 1. 产品链接生成视频:输入产品链接,一键生成数字人产品介绍视频。目前产品链接主要支持 Amazon、Shopify、ETSY、Ebay、Appstore、Google Play、WIKI 等,其他网站来源持续接入中,敬请期待。如遇生成失败的问题,可尝试删除链接后缀,点击重新生成。 2. AI 视频高光切片:智能提取视频高光片段,高效二创生成新视频。适用场景为有初始长视频素材,需要提取高光镜头对初始素材进行混剪投放到短视频平台。使用时点击上传视频——立即生成。 3. AI 商品图:任意迁移产品背景,和商品元素智能融合。适用场景为有商品初始素材(无背景或有背景均可),需要更换原图背景。使用时上传商品图片——输入背景描述——点击开始生成。
2025-01-19