直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

语音识别速度与什么有关

回答

语音识别速度主要与以下因素有关:

  1. 算法和模型:神经网络等先进的算法和模型能够提高识别速度和准确性。
  2. 计算资源:包括硬件性能如 CPU、GPU 等,强大的计算能力有助于加快处理速度。
  3. 数据量和质量:丰富且高质量的训练数据能优化模型,从而提升识别速度。
  4. 预处理工作:有效的预处理可以减少后续计算量,加快识别过程。
  5. 模型的优化程度:例如参数调整、结构精简等。

在语音识别的发展历程中,早期的方法涉及大量预处理、高斯混合模型和隐式马尔科夫模型,而现在几乎完全被神经网络替代。1970 年代 DARPA 赞助的比赛中,基于统计的方法战胜了基于人类知识的方法,这导致自然语言处理领域向依赖统计和计算的方向转变。深度学习的兴起进一步提升了语音识别系统的性能,减少了对人类知识的依赖,加大了对计算资源的利用。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

软件 2.0(Software 2.0)

让我们来看看这场转变中的具体领域的例子。我们会发现,在过去几年,对于这些领域,我们放弃了尝试通过显式写代码的方式去解决复杂问题,取而代之的,是转向了软件2.0。图像识别:图像识别之前常常是由特征工程组成的,只是在最后加入一点点机器学习(比如:SVM)。之后,通过使用更大的数据集(比如ImageNet)和在卷积神经网络结构空间中进行搜索,我们发现了更强大的视觉特征。最近,我们甚至不再相信自己手写的网络结构,而开始用[类似的方法](https://arxiv.org/abs/1703.01041)[搜索](https://arxiv.org/abs/1703.01041)(最优网络结构)。语音识别:以前的语音识别工作,涉及到大量的预处理工作、高斯混合模型和隐式马尔科夫模型,但是现在,几乎只需要神经网络。还有一句与之非常相关的搞笑名言,是1985年Fred Jelinek所说:“每当我开除一个语言学家,我的语音识别系统的性能就会提高一点”。语音合成:历史上,语音合成一直采用各种拼接技术,但是现在,SOTA(State Of The Art)类型的大型卷积网络(比如[WaveNet](https://deepmind.com/blog/wavenet-launches-google-assistant/))可以直接产生原始音频信号输出。

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

但有些行业正在改变,Machine Learning是主体。当我们放弃通过编写明确的代码来解决复杂问题时,这个到2.0技术栈的转变就发生了,在过去几年中,很多领域都在突飞猛进。语音识别曾经涉及大量的预处理、高斯混合模型和隐式Markov模型,但今天几乎完全被神经网络替代了。早在1985年,知名信息论和语言识别专家Fred Jelinek就有一句经常被引用的段子:“每当我解雇一个语言学家,我们的语音识别系统的性能就会得到提高”。配图12:图解软件2.0的代表应用除了大家熟悉的图像语音识别、语音合成、机器翻译、游戏挑战之外,AI在很多传统系统也看到了早期的转型迹象。例如The Case for Learned Index Structures用神经网络取代了数据管理系统的核心组件,在速度上比B-Trees缓存优化达快70%,同时节省了一个数量级的内存。

苦涩的教训 The Bitter Lesson

在语音识别领域,1970年代由DARPA赞助的一场早期比赛就是一个例子。参赛者包括使用了大量人类知识(如对单词、音素、人类声道的理解)的特殊方法,而另一边则是更依赖统计和大量计算的新方法,基于隐马尔可夫模型(HMMs)。最终,基于统计的方法战胜了基于人类知识的方法。这导致了自然语言处理领域的一次重大转变,随着时间的推移,统计和计算开始成为该领域的主导。深度学习在语音识别中的兴起是这一趋势的最新体现。深度学习方法更少依赖人类知识,使用更多的计算资源,并通过在大型训练集上的学习,极大地提升了语音识别系统的性能。与游戏领域相似,研究人员总是试图创建一个按照他们自己的思维方式工作的系统,但这种尝试最终证明是逆向而行,不仅浪费了大量的研究时间,而且在大量计算资源可用并找到有效利用方法的情况下,这种尝试显得更是多余。计算机视觉领域也经历了相似的发展模式。早期的方法试图通过搜索边缘、广义圆柱体或SIFT特征来处理视觉问题。但在今天,这些方法都被淘汰了。现代的深度学习神经网络仅使用卷积和某些类型的不变性概念,取得了更好的表现。

其他人在问
语音转文字
以下是关于语音转文字的相关信息: 推荐使用 OpenAI 的 wishper,相关链接:https://huggingface.co/openai/whisperlargev2 、https://huggingface.co/spaces/sanchitgandhi/whisperjax 。该项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,速度快 70 多倍,是目前最快的 Whisper API。 语音转文本 API 提供转录和翻译两个端点,基于开源大型v2 Whisper 模型。可用于将音频转录为任何语言,将音频翻译并转录成英语。目前文件上传限制为 25MB,支持的输入文件类型包括:mp3、mp4、mpeg、mpga、m4a、wav 和 webm。 转录 API 的输入是音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可通过添加更多带有相关选项的form 行设置其他参数。 翻译 API 输入任意支持语言的音频文件,输出为英文文本,目前仅支持英语翻译。 对于默认情况下 Whisper API 仅支持小于 25MB 的文件,若音频文件更长,需将其分成小于 25MB 的块或使用压缩后格式,可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。 可以使用提示提高 Whisper API 生成的转录质量,如改善特定单词或缩略语的识别、保留分段文件的上下文、避免标点符号的省略、保留填充词汇、处理不同书写风格等。
2024-11-20
ai语音生成
以下是为您整理的关于 AI 语音生成的相关内容: 工具推荐: Coqui Studio:https://coqui.ai Bark:https://github.com/sunoai/bark Replica Studios:https://replicastudios.com ElevenLabs:作为一款先进的 AI 语音生成工具,在多语言支持、语音质量和灵活性方面表现出色。其 Multilingual v2 模型支持近 30 种语言,能够生成自然、清晰且情感丰富的语音,几乎可以媲美人类真实声音。精准的声音克隆技术和灵活的定制选项使其适用于各种专业应用场景,从内容创作到客户服务,再到游戏开发和教育等领域。但也存在语言切换问题和对高质量音频样本的依赖可能影响用户体验,定价策略可能限制某些用户群体使用,以及引发伦理、版权和对人类工作影响的讨论等问题。 人工智能音频初创公司: adauris.ai:https://www.adauris.ai/ ,将书面内容转化为引人入胜的音频,并实现无缝分发。 Aflorithmic:https://audiostack.ai/ ,专业音频、语音、声音和音乐的扩展服务。 Sonantic(被 Spotify 收购):https://prnewsroomwp.appspot.com/20220613/spotifytoacquiresonanticanaivoiceplatform/ ,提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 kroop AI:https://www.kroop.ai/ ,利用合成媒体生成和检测,带来无限可能。 dubverse:https://dubverse.ai/ ,一键使您的内容多语言化,触及更多人群。 Resemble.ai:https://www.resemble.ai/ ,生成听起来真实的 AI 声音。 Replica:https://www.replicastudios.com/ ,为游戏、电影和元宇宙提供 AI 语音演员。 Respeecher:https://www.respeecher.com/ ,为内容创作者提供语音克隆服务。 amai:https://amai.io/ ,超逼真的文本转语音引擎。 AssemblyAI:https://www.assemblyai.com/ ,使用单一 AI 驱动的 API 进行音频转录和理解。 DAISYS:https://daisys.ai/ ,听起来像真人的新声音。 WellSaid:https://wellsaidlabs.com/ ,从真实人的声音创建逼真的合成语音的文本转语音技术。 Deepsync:https://dubpro.ai/ ,生成听起来完全像你的音频内容。
2024-11-20
有没有语音交互领域的AI Agent的好的思路
以下是关于语音交互领域的 AI Agent 的一些思路: 1. 构建像人一样的 Agent:实现所需的记忆模块、工作流模块和各种工具调用模块,这在工程上具有一定挑战。 2. 驱动躯壳的实现:定义灵魂部分的接口,躯壳部分通过 API 调用,如 HTTP、webSocket 等。要处理好包含情绪的语音表达以及躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 保证实时性:由于算法部分组成庞大,几乎不能单机部署,特别是大模型部分,会涉及网络耗时和模型推理耗时,低延时是亟需解决的问题。 4. 实现多元跨模态:不仅要有语音交互,还可根据实际需求加入其他感官,如通过添加摄像头数据获取视觉信息并进行图像解析。 5. 处理拟人化场景:正常与人交流时会有插话、转移话题等情况,需要通过工程手段丝滑处理。 此外,像 AutoGLM 这样的产品,通过模拟人类操作来实现跨应用的控制,展现出了一定的智能理解能力,如能根据用户意图选择合适的应用场景。但仍存在语音识别偏差、操作稳定性需提升、支持平台有限等问题,未来随着多模态理解能力和操作精准度的提高,发展空间较大。
2024-11-19
ai 语音,ai语音,ai 文转语音,有哪些成功的商业化落地项目吗
以下是一些成功的 AI 语音商业化落地项目: 语音合成(TTS)方面: :为所有人提供开放的语音技术。 :基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 :基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 :使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 :为出版商和创作者开发最具吸引力的 AI 语音软件。 :使用户能够使用文本转语音技术生成播客。 :基于生成机器学习模型构建内容创作的未来。 :从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 :演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 :将书面内容转化为引人入胜的音频,并实现无缝分发。 :专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 语音转录方面: :为聋人和重听者提供专业和基于 AI 的字幕(转录和说话人识别)。 :专业的基于 AI 的转录和字幕。 :混合团队高效协作会议所需的一切。 :音频转录软件 从语音到文本到魔法。 :99%准确的字幕、转录和字幕服务。 :为语音不标准的人群提供的应用程序。 :通过 AI 语音识别实现更快速、更准确的语音应用。 :会议的 AI 助手。 :让孩子们的声音被听见的语音技术。 :使用语音识别自动将音频和视频转换为文本和字幕的 SaaS 解决方案。 :实时字幕记录面对面小组会议中的发言内容。 :理解每个声音的自主语音识别技术。 :支持 35 多种语言的自动转录。 :端到端的边缘语音 AI,设备上的语音识别。
2024-11-19
ai生成语音
以下是一些人工智能生成语音的相关信息: 人工智能音频初创公司: :将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 生成式 AI 在游戏领域的机会: 许多创业公司正在尝试创造人工智能生成的音乐,如 Soundful、Musico、Harmonai、Infinite Album 和 Aiva。 很多公司试图为游戏中的人物创造逼真的声音,包括 Sonantic、Coqui、Replica Studios、Resemble.ai、Readspeaker.ai 等。 生成式人工智能用于语音的优势包括即时对话生成、角色扮演、控制音效、本地化等。 借助生成性 AI 对话,角色可以对玩家的行为做出充分的反应。 使用与玩家的化身相匹配的生成声音可以维持玩家扮演幻想角色的幻觉。 可以控制声音的细微差别,如语调、转折、情感共鸣、音素长度、口音等。 像 Deepdub 这样的公司专门专注于对话本地化这个细分市场。
2024-11-17
AI 语音生成
以下是一些与 AI 语音生成相关的信息: 人工智能音频初创公司: :将书面内容转化为引人入胜的音频,并实现无缝分发。 :提供专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 游戏开发中的 AI 语音生成工具: Coqui Studio:https://coqui.ai Bark:https://github.com/sunoai/bark Replica Studios:https://replicastudios.com 生成式 AI 在游戏领域的机会: 许多创业公司正在尝试创造人工智能生成的音乐,如 Soundful、Musico、Harmonai、Infinite Album 和 Aiva。 对话&语音方面,很多公司试图为游戏中的人物创造逼真的声音,包括 Sonantic、Coqui、Replica Studios、Resemble.ai、Readspeaker.ai 等。 即时对话生成,角色可以对玩家的行为做出充分反应。 角色扮演,使用与玩家的化身相匹配的生成的声音保持幻想。 控制音效,可控制声音的细微差别。 本地化,对话可翻译成任何语言并以同样的声音说话,如 Deepdub 专注于这个细分市场。
2024-11-17
喂AI文档,表格不识别怎么办
如果 AI 文档中的表格不被识别,您可以参考以下内容: 召回排序过程中会过滤掉标题里携带了【已废弃】、【已过期】、【已停用】、【已删除】、【已作废】、【已过时】、【弃用】等字眼的片段。如果某些文档已经过期、内容不再准确,但是又需要保留存档,可以在文档总标题里加上关键字眼,避免这些文档进入问答、影响答案的准确性。 当前文档里插入的表格(包括普通表格、电子表格、多维表格)内容虽然已经能被 AI 识别,但是识别效果还在进一步提升中。某篇文档如果主要用于 AI 智能问答,现阶段为了保证更好的问答效果,可以尽量都使用普通文本描述,避免大量有价值的信息都包含在表格中。 随着飞书团队持续丰富支持识别的数据类型,这些局限会逐渐消除、问答效果也会持续提升。
2024-11-18
识别英文语音为字幕的工具
以下是一些识别英文语音为字幕的工具: 1. Whisper(https://github.com/openai/whisper):这是一个优秀的字幕处理工具,能很好地识别视频/音频中的语言。Medium 尺寸能很好地解决英文的问题,中文处理方面,据宝玉 xp 的说法,Large 尺寸效果会好一些。但仅处理成英文对母语是中文的绝大部分人来说不够,最好有纯中文或双语字幕。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕。已处理 1.2 亿+视频,识别准确率接近 100%。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 4. Arctime:可对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可以根据自身需求选择最适合的视频自动字幕工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
识别英文语音为字幕的工具
以下是一些识别英文语音为字幕的工具: 1. Whisper(https://github.com/openai/whisper):这是一个优秀的字幕处理工具,能很好地识别视频/音频中的语言。Medium 尺寸能很好地解决英文的问题,中文处理方面,据宝玉 xp 的说法,Large 尺寸效果会好一些。但仅处理成英文对母语是中文的绝大部分人来说不够,最好有纯中文或双语字幕。 2. Reccloud:免费的在线 AI 字幕生成工具,可直接上传视频精准识别,能对识别的字幕进行翻译,自动生成双语字幕。已处理 1.2 亿+视频,识别准确率接近 100%。 3. 绘影字幕:一站式专业视频自动字幕编辑器,提供简单、准确、快速的字幕制作和翻译服务,支持 95 种语言,准确率高达 98%,可自定义字幕样式。 4. Arctime:可对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台,支持 SRT 和 ASS 等字幕功能。 5. 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,您可以根据自身需求选择最适合的视频自动字幕工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-17
识别英文歌歌词的AI工具
以下为您推荐识别英文歌歌词的 AI 工具:Suno。但需要注意的是,目前使用该工具做 hiphop 存在一定难度,比如咬字太清楚,没有懒音、吞音、连读和方言,可能导致原本两音可读完的“马水”,AI 一定会念“马思唯”,从而错开一个字,使 flow 和 beat 对不上后面全乱拍。稍微有点作用的解决方法是替换拟音歌词和手动断句,标记好主歌副歌位置。
2024-11-17
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14
有什么特别好的AI识别图片的大模型API
以下是一些关于 AI 识别图片的大模型 API 相关的信息: 学习笔记《【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人》中提到,对于识别印刷体图片,会先将图片变成黑白、调整大小为固定尺寸,然后与数据库中的内容进行对比得出结论。但这种基于规则的方法存在多种局限,而神经网络专门处理未知规则的情况,在图片识别中具有优势。 搭建 OneAPI 可以汇聚整合多种大模型接口,方便后续更换使用各种大模型。 0 基础手搓的“AI 拍立得”概念旨在简化操作流程,提升效率。用户可以选择拍摄场景类型并立即拍照,AI 会自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈。其实现场景包括图片转成文本和图片转绘图片等。例如,图片转成文本时,大模型会根据选择的场景生成与内容相关的文字描述或解说文本。
2024-11-11
COMFYUI 翻译节点 速度慢
ComfyUI 共学中提到了翻译节点的相关内容。其中提到翻译节点速度慢的情况,同时介绍了两个可将中文翻译为英文的节点,一个是 Web UI 中的,另一个是 Max live 开发团队的,后者还能补充提示词。此外,还讲解了 ComfyUI 在运行速度上的优势,比如与 webUI 相比,出图质量基本一样但运行速度更高效。
2024-08-23
语音唤醒速度与什么有关
语音唤醒速度主要与以下几个方面有关: 1. 硬件性能:包括处理器的运算能力、麦克风的质量和灵敏度等。 2. 算法优化:语音识别和唤醒算法的效率和准确性对速度有重要影响。 3. 声学模型:其准确性和适应性会影响语音唤醒的速度。 4. 网络环境:如果涉及云端处理,网络的稳定性和速度也会产生作用。 5. 语音特征提取:提取语音特征的方法和精度会影响唤醒的速度。 6. 模型训练数据:数据的质量、数量和多样性会影响模型的性能和唤醒速度。 7. 系统资源占用:其他正在运行的程序占用的系统资源多少会对语音唤醒速度产生影响。
2024-08-13