Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

4060显卡用Stable Diffusion怎么样

Answer

4060 显卡用于 Stable Diffusion 的情况如下:

在 30 系列显卡中,3060ti 12GB 显卡、3090 和 3090ti 比较适合 Stable Diffusion 生成图片,其他显存不够的显卡意义不大。2080ti 22GB 魔改版本显卡比较考验运气,不建议普通玩家选购。A5000 等专业卡不能玩游戏,生成速度不如同价位游戏卡,半精度训练模型运算速度可能会快一点,也不建议普通玩家选购。

如果使用 40 系显卡,16GB 的 4060ti 虽然速度比 12GB 的 4070ti 慢一点,但大显存可以执行更多样的 AI 生成任务,比如生成更大分辨率的超清图片,使用更高的参数进行 Dream booth 微调等。

需要注意的是,如果在 Stable Diffusion 模型加载时遇到 CUDA 显存不足的错误,简单来说就是显卡不行,没有足够的显存空间分配给该模型。解决方法有:换个好一些的显卡,至少英伟达 2060 以上;或者开启低显存模式。

开启低显存模式的方法如下:在 stable-diffusion-webui 文件夹下找到 webui-user.bat,用文本或代码编辑器打开该文件夹。如果显卡显存不足 3G,可以在 set COMMANDLINE_ARGS=的后面添加参数–lowvram –always-batch-cond-uncond 之后保存。如果显卡只有 4G 显存,可以在 set COMMANDLINE_ARGS=的后面添加参数–precision full –no-half –lowvram –always-batch-cond-uncond 之后保存。

Content generated by AI large model, please carefully verify (powered by aily)

References

Stable Diffusion电脑配置选购指南

30系列显卡中,我认为3060ti12GB显卡和3090、3090ti三款显卡是比较适合SD生成图片的,其他的显存不够,快一点意义不大。至于2080ti22GB魔改版本显卡,比较考验运气哈哈,建议还是多花点求个稳定。A5000等专业卡不能玩游戏,生成速度不如同价位游戏卡,半精度训练模型运算速度可能会快一点,不建议普通玩家选购。

教程:Stable Diffusion 安装过程中常见报错解决方法

Stable diffusion model failed to load,exiting请按任意键继续。..根据错误信息显示,Stable Diffusion模型加载时遇到了CUDA显存不足的错误,简单点来说就是显卡不行,没有足够的显存空间分配给该模型。解决方法1:换个好一些的显卡,至少英伟达2060以上。解决方法2:开启低显存模式,开启低显存模式的方法如下。在stable-diffusion-webui文件夹下找到webui-user.bat,用文本或代码编辑器打开该文件夹,可以看到如下内容。@echo offset PYTHON=set GIT=set VENV_DIR=set COMMANDLINE_ARGS=call webui.bat我们只需要修改set COMMANDLINE_ARGS=部分即可,该部分内容是启动参数。低于3G显存如果你的显卡显存不足3G,可以在set COMMANDLINE_ARGS=的后面添加参数–lowvram –always-batch-cond-uncond之后保存即可,变更之后的文件内容如下。@echo offset PYTHON=set GIT=set VENV_DIR=set COMMANDLINE_ARGS=–lowvram –always-batch-cond-uncondcall webui.bat4G显存如果你的显卡只有4G显存,可以在set COMMANDLINE_ARGS=的后面添加参数–precision full –no-half –lowvram –always-batch-cond-uncond之后保存即可,变更之后的文件内容如下。@echo offset PYTHON=set GIT=set VENV_DIR=set COMMANDLINE_ARGS=–precision full –no-half –lowvram –always-batch-cond-uncond

Stable Diffusion电脑配置选购指南

下方是40系的产品对比图,大家可以按照自己的预算选购。我认为16GB的4060ti虽然速度比12GB的4070ti慢了一点,但是大显存可以执行更多样的AI生成任务,比如生成更大分辨率的超清图片,使用更高的参数进行Dream booth微调等,相比起能不能执行任务,执行任务慢一点就不那么重要了。

Others are asking
我的电脑显卡是1060 5g,可以使用ai软件吗
1060 5G 显卡可以使用一些 AI 软件,但性能可能会受到一定限制。对于一些对显卡性能要求不太高的 AI 应用,例如简单的图像识别、文本处理等,您的显卡能够满足基本需求。然而,对于较为复杂的 AI 任务,如大规模的深度学习模型训练、高质量的 AI 绘画生成等,可能会出现运行速度较慢、效果不理想的情况。 如果您只是初步尝试使用 AI 软件,或者进行一些轻度的应用,您的显卡或许可以胜任。但如果您有更专业、高强度的使用需求,可能需要考虑升级显卡以获得更好的性能体验。
2024-11-10
本地安装大模型使用4060显卡和4060TI显卡有什么区别
在本地安装大模型时,4060 显卡和 4060TI 显卡主要有以下区别: 显存方面:显存是选择显卡的重要因素。4060 显卡的显存通常小于 4060TI 显卡。对于一些对显存要求较高的任务,如生成更大分辨率的超清图片、使用更高的参数进行 Dream booth 微调等,4060TI 显卡的大显存更具优势。 生成速度方面:4060TI 显卡的速度比 4060 显卡快。但在某些情况下,如果显存不足导致无法执行任务,速度稍慢就显得不那么重要了。 总体而言,在预算允许的情况下,16GB 的 4060TI 显卡由于其较大的显存,可以执行更多样的 AI 生成任务。但如果预算有限,4060 显卡也是一个可行的选择。
2024-11-06
a800 ,H100,a10,H800这4个显卡能力有啥差异
以下是 A800、H100、A10、H800 这 4 个显卡在能力上的一些差异: 在训练与推理方面: 对于大型模型的训练,许多模型在 NVIDIA H100 上最具成本效益,但获取在 NVIDIA H100 上运行的模型较难,且通常需要长期合作承诺。如今更多的选择是在 NVIDIA A100 上运行大多数模型训练,但对于大型集群仍需要长期承诺。 大型语言模型(LLM)的参数数量众多,通常需要分布到多个卡中,即使进行 LLM 推理,可能也需要 H100 或 A100。但较小的模型(例如 Stable Diffusion)需要的 VRAM 要少得多,初创公司也会使用 A10 等显卡。 在内存要求方面: 大型 LLM 的参数数量太多,任何单卡都无法容纳,需要类似于训练的多卡设置。 对于一些较小的模型,A10 等显卡可能就能够满足其内存需求。 需要注意的是,决定选择哪种 GPU 主要是一个技术决策,需要根据具体应用来确定最具成本效益的选择。
2024-10-16
如何让COMFYUI使用我的INTEL A770显卡?
要让 ComfyUI 使用您的 INTEL A770 显卡,以下是一些相关的步骤和信息供您参考: 首先,ComfyUI 本地安装的方法主要有以下几种: 1. 命令行安装: 如果您已经安装过 SD WebUI,可以跳到第二步。首先需要打开系统 Terminal,不同系统的 Terminal 可能有所不同。 Windows 用户:建议在有 NVIDIA 显卡的电脑上使用。需要下载 Miniconda3,输入相关命令进行安装,然后安装 pytorch 的 nightly 版本。 Mac 用户:安装需要根据电脑芯片不同输入不同代码。下载 Miniconda3 并输入相关命令进行安装,最后安装 pytorch。 2. 安装包安装:仅支持 Windows 系统且显卡必须是 Nivida。下载地址是,下载最新版本解压即可使用。 关于 ComfyUI 的硬件配置: ComfyUI 相比 WebUI 配置更低、系统资源占用更少、出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡,内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。 需要注意的是,目前 ComfyUI 对于 INTEL A770 显卡的支持情况可能不太明确,您可能需要根据实际情况进行尝试和调整。
2024-10-10
蛟龙16pro配置(处理器R7-7745HX,显卡RTX4060 8G,硬盘512GPCIE4.0SSD)可以用于审计人员本地化部署大模型用于数据分析工作吗
蛟龙 16pro 的配置(处理器 R77745HX,显卡 RTX4060 8G,硬盘 512G PCIE4.0 SSD)对于审计人员本地化部署大模型用于数据分析工作来说,可能存在一定的局限性。 处理器 R77745HX 具有一定的计算能力,但在处理大规模数据和复杂的模型运算时,其性能可能不够强劲。 显卡 RTX4060 8G 对于一些较为复杂的图形处理和计算任务能够提供一定的支持,但对于大规模的深度学习模型训练和数据分析,可能会显得不足。 512G 的 PCIE4.0 SSD 硬盘容量相对较小,在存储大量数据时可能会很快耗尽空间。 综上所述,该配置在一定程度上可以用于简单的数据分析任务,但对于较为复杂和大规模的大模型本地化部署及数据分析工作,可能需要更强大的硬件配置,例如更高性能的处理器、更大容量和更高性能的显卡,以及更大的存储空间。
2024-09-14
部署私有大模型需要什么显卡
部署私有大模型对显卡的要求如下: 显存是显卡选择的第一要素,生成速度优先级相对较低。 SD1.5 版本的底模 6G 显存能勉强跑,8G 显存可较流畅生成图片和炼制 lora,12G 能流畅使用 Dreambooth 微调大模型。 即将到来的 SDXL 对显卡性能要求更高,8G 显存起步,建议 16G 显存,微调大模型可能需要 20G 以上的显存,只有 4090 和 3090 能较好应对。 预算不足时,可选择 30 系显卡或二手显卡。但不建议选择 P40 之类超大显存但速度超级慢的卡。 常见显卡中,4090 生成 512 的图可跑进 1 秒内。 对于一些垂直场景的专有技能模型,极端情况下单机单卡,如消费级显卡 3090、3080、RTX 显卡也可以使用。 综合多方评测结论,4090 是用于 SD 图像生成综合性价比最高的显卡。如果有打算进行 Dream booth 微调大模型,硬盘空间要准备充足,一次训练可能会产生几十 G 的文件。同时,其他电脑配件只要不太差即可,内存建议 32GB 以上。硬盘方面,不建议考虑机械盘,可选择国产固态。
2024-09-08
Stable Diffusion 学习教程
以下是关于 Stable Diffusion 学习的教程: 学习提示词: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 核心基础知识: 1. Stable Diffusion 系列资源。 2. 零基础深入浅出理解 Stable Diffusion 核心基础原理,包括通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍。 3. Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析。 4. 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、生成示例。 5. Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 6. 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括训练资源分享、模型训练初识、配置训练环境与训练文件。 其他资源: 1. 了解 Stable diffusion 是什么: 。 2. 入门教程: 。 3. 模型网站:C 站 。 4. 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。
2025-01-06
Stable Diffusion、comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其想象成集成了 stable diffusion 功能的 substance designer。它具有以下特点: 优势: 对显存要求相对较低,启动和出图速度快。 生成自由度更高。 可以和 webui 共享环境和模型。 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 丰富(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 其生图原理如下: 基础模型:ComfyUI 使用预训练的扩散模型作为核心,通常是 Stable Diffusion 模型,包括 SD1.5、SD2.0、SDXL、SD3、FLUX 等。 文本编码:当用户输入文本提示时,ComfyUI 首先使用 CLIP 文本编码器将文本转换为向量表示,以捕捉文本的语义信息。 Pixel Space 和 Latent Space: Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于“图像输入”模块或直接从文本提示生成的随机噪声图像,生成过程结束时会将处理后的潜在表示转换回像素空间生成最终图像。 Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点执行采样过程,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程,在 ComfyUI 中通常通过调度器控制,如 Normal、Karras 等,可通过“采样器”节点选择不同调度器控制处理噪声和逐步去噪回归到最终图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步,通过控制步数影响图像生成的精细度和质量。 官方链接:https://github.com/comfyanonymous/ComfyUI (内容由 AI 大模型生成,请仔细甄别)
2025-01-06
社区有关于stable diffusion 的教程吗
以下是为您找到的关于 Stable Diffusion 的教程: 知乎教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识,目录包括: Stable Diffusion 系列资源 零基础深入浅出理解 Stable Diffusion 核心基础原理,包含通俗讲解模型工作流程(包含详细图解)、从 0 到 1 读懂模型核心基础原理(包含详细图解)、零基础读懂训练全过程(包含详细图解)、其他主流生成式模型介绍 Stable Diffusion 核心网络结构解析(全网最详细),包括 SD 模型整体架构初识、VAE 模型、UNet 模型、CLIP Text Encoder 模型、SD 官方训练细节解析 从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画(全网最详细讲解),包括零基础使用 ComfyUI 搭建推理流程、零基础使用 SD.Next 搭建推理流程、零基础使用 Stable Diffusion WebUI 搭建推理流程、零基础使用 diffusers 搭建推理流程、Stable Diffusion 生成示例 Stable Diffusion 经典应用场景,包括文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建 从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型(全网最详细讲解),包括 Stable Diffusion 训练资源分享、模型训练初识、配置训练环境与训练文件 其他教程: 了解 Stable diffusion 是什么: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 稳定扩散(Stable Diffusion)是如何运作的:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 入门教程: 文字教程: 模型网站: C 站SD 模型网站:https://civitai.com/ Liblibai模型+在线 SD:https://www.liblib.ai/ huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 吐司站:https://tusiart.com/ 推荐模型:人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ
2025-01-04
stabel diffusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理就好比学习画画。比如学梵高的风格,要先看他的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),但需要科学上网。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本并勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 通过这些步骤,相信您可以快速上手 Stable Diffusion Web UI,开始探索 AI 绘画的乐趣。后续还可以深入学习 Stable Diffusion 的原理,以及在不同场景中的应用。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-23
Stable Diffusion基础学习
以下是关于系统学习 Stable Diffusion 的基础内容: 学习提示词: 学习基本概念,包括了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 研究官方文档和教程,学习常见术语和范例。 掌握关键技巧,如组合多个词条精确描述效果、使用特定符号控制生成权重、处理抽象概念等。 通过实践和反馈,不断总结经验,创建自己的提示词库,并持续跟进前沿。 核心基础知识: 了解 Stable Diffusion 系列资源。 零基础深入浅出理解核心基础原理,包括通俗讲解模型工作流程、读懂核心基础原理、读懂训练全过程、介绍其他主流生成式模型。 解析核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型、官方训练细节。 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同流程。 了解经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建。 学习从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括训练资源分享、模型训练初识、配置训练环境与训练文件。 Nenly 的零基础入门课学习资料汇总: 提供了配套的学习文档,包括随堂素材、生成信息、内容修订等。 有安装攻略和素材下载的相关内容。
2024-12-22
stable diffusion
稳定扩散(Stable Diffusion)的运作原理如下: 消除图像中的噪点: 若在太暗情况下拍照产生的颗粒状即图像中的噪点。Stable Diffusion用于生成艺术作品,其在幕后所做的是“清理”图像,且比手机图像编辑器中的噪点消除滑块复杂得多。它了解世界的样子和书面语言,并利用这些来指导噪点消除过程。例如,给它一幅以H.R. Giger风格描绘的外星人弹吉他的图像,它能像熟练的平面艺术家一样利用对Giger艺术作品和世界的了解来清理图像。 大多数艺术生成工具中有“推理步骤”滑块,稳定扩散是逐步去除噪点的。 开始生成的方式:为了生成艺术,给稳定扩散提供一个纯噪点的初始图像,并谎称这是一幅特定风格的画。稳定扩散能做到是因为它是基于统计数据的计算机程序,会估计所有选项的概率,即使概率都极低,也会选择概率最高的路径,例如寻找噪点中最可能像吉他边缘的部分来填充物体。每次给它不同的纯噪点图像,都会创作出不同的艺术作品。 ComfyUI的生图原理: ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。 Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,对应于通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 Latent Space(潜在空间):ComfyUI中的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,可通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 扩散过程(Diffusion Process): 噪声的生成和逐步还原:扩散过程表示从噪声生成图像的过程。在ComfyUI中,通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,会根据不同的采样策略逐步将噪声还原为图像。 时间步数:在生成图像时,扩散模型会进行多个去噪步。在ComfyUI中,可通过控制步数来影响图像生成的精细度和质量。
2024-12-18
4060和4060TI哪个更适合SD
在 Stable Diffusion(SD)的应用中,30 系列显卡中 3060ti 12GB 显卡、3090 和 3090ti 比较适合生成图片,其他显存不够的显卡意义不大。2080ti 22GB 魔改版本显卡比较考验运气,建议求稳定。SD 的图像生成主要依赖显卡,只要显存足够,其他配置不太差就行。之前有文章分析,i9 和 i5 的 CPU 对于生成速度影响在 10%以下。能上 4090 建议上 4090,哪怕是万丽版本也好过高配 4080。在实际测试中,使用 4080ti 笔记本,12G 显存,不同模型和设置的出图时间有所不同。例如使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸的图片,一张图花了 2 分 57 秒;使用 320Mb 的 small 模型,用时 34 秒。对于 4060 和 4060TI 哪个更适合 SD,上述内容未给出直接对比,但综合来看,显存大小和性能表现是关键因素,您可以参考以上信息进行判断。
2024-08-13
怎么学习Midjourney和stable defussion
以下是关于学习 Midjourney 和 Stable Diffusion 的一些建议: Midjourney: 优势:操作简单方便,创作内容丰富,但需要科学上网并且付费,月费约 200 多元。若只是前期了解,可先尝试。 学习途径:只需键入“thingyouwanttoseev 5.2”(注意末尾的v 5.2 很重要,它使用最新的模型),就能得到较好的结果。Midjourney 需要 Discord,可参考。 Stable Diffusion: 优势:开源免费,可以本地化部署,创作自由度高,但需要较好的电脑配置,尤其是显卡。 学习途径: 关于具体的安装方法可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。 可以参考,了解其工作原理和基本功能。 如果走 Stable Diffusion 这条路,这里有一个很好的指南(请务必阅读第 1 部分和第 2 部分) 此外,在学习 AI 绘画这段时间,发现 AI 绘画并不会完全替代设计师,而是可以让出图质量更好,效率更高。比如可以用 Midjourney 生成线稿,PS 稍微做一些修正,再用 ControlNet 控制,Stable Diffusion 上色,多套 AI 组合拳,可以快速生成效果惊艳的图。
2025-01-06
stable difusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理可以这样理解:好比学习画画,比如学梵高的风格,要先看梵高的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照这个模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),有真实系的、二次元的、游戏 CG 风的等等,但需要科学上网。
2024-12-24
stable difudion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。 等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 安装 Stable Diffusion 的电脑配置要求: 1. 查看电脑配置: 对于 Windows 系统,可以查看专用 GPU 内存。 4GB:说明电脑勉强可以跑动 SD,出图的时间会比较长。 6GB:出一张图的时间是 20 50 秒,SD 的大部分功能都可以使用。 8GB:5 20 秒可以出一张图,基本上 SD 的所有功能都对你开放。 2. Mac 系统:可以参考下面的视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761
2024-12-24