Navigate to WaytoAGI Wiki →
Home
Events
Websites
Agents
Prompts
Chat with Wiki
🇺🇸 English
Login
Home
/
Question List
/
Question Detail
关于MOE的文章
Answer
《混合专家解释》
《什么是 MoE 架构,如何实现?》
《苹果大模型 MM1 杀入场:300 亿参数、多模态、MoE 架构,超半数作者是华人》
《AIGC Weekly #50》
《AIGC Weekly #51》
Content generated by AI large model, please carefully verify (powered by aily)
References
问:什么是MoE架构,如何实现?
苹果大模型MM1杀入场:300亿参数、多模态、MoE架构,超半数作者是华人
AIGC Weekly #51
AIGC Weekly #50
Ask Again
Others are asking
什么是MOE?
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下几个步骤: 1. 定义专家网络:首先需要定义多个专家网络,每个专家网络负责处理特定的任务或数据集。这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,需要将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。例如,苹果构建了参数最高可达 300 亿的多模态模型系列 MM1,它由密集模型和混合专家(MoE)变体组成,在预训练指标中实现 SOTA,在一系列已有多模态基准上监督微调后也能保持有竞争力的性能。阿里通义千问也有大型专家模型(MoE),如 Qwen2.5Max 基于 SFT 和 RLHF 策略训练,在多项基准上超越 DeepSeek V3,引发社区关注。
2025-03-21
MoE模型训练为什么会比dense模型要更困难?
MoE 模型训练比 dense 模型更困难的原因主要包括以下几点: 1. 内存需求:MoE 模型需要将所有专家加载到内存中,这导致其需要大量的 VRAM。 2. 微调挑战:微调 MoE 模型存在困难,历史上在微调过程中较难泛化。 3. 训练设置:将密集模型转换为 MoE 模型时,虽然训练超参数和训练设置相同,但 MoE 模型的特殊结构仍带来了训练上的复杂性。 4. 计算效率与泛化平衡:MoE 模型在训练时更具计算效率,但在微调时难以实现良好的泛化效果。
2025-03-17
MoE
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下步骤: 1. 定义专家网络:首先定义多个专家网络,每个专家网络负责处理特定的任务或数据集,这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。
2025-02-26
moe是什么
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大而复杂的任务拆分成多个小而简单的任务,并让不同的专家网络负责处理不同的任务。 在 MoE 架构中,输入数据会被分配给不同的专家网络进行处理,每个专家网络会返回一个输出结果,最终的输出结果是所有专家网络输出结果的加权和。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下几个步骤: 1. 定义专家网络:首先需要定义多个专家网络,每个专家网络负责处理特定的任务或数据集。这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,需要将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。例如,苹果的大模型 MM1 就采用了 MoE 架构,其参数最高可达 300 亿,由密集模型和混合专家(MoE)变体组成,在预训练指标中实现了 SOTA,在一系列已有多模态基准上监督微调后也能保持有竞争力的性能。在 MM1 中,为了提高模型的性能,研究者将 LLM 的大小扩大,并通过在语言模型的 FFN 层添加更多专家来扩展密集模型。
2025-01-12
MoE
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下几个步骤: 1. 定义专家网络:首先需要定义多个专家网络,每个专家网络负责处理特定的任务或数据集。这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,需要将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。 此外,苹果大模型 MM1 也采用了 MoE 架构,研究者在小规模、9M、85M、302M 和 1.2B 下对学习率进行网格搜索,通过专家混合(MoE)进行扩展。要将密集模型转换为 MoE,只需将密集语言解码器替换为 MoE 语言解码器。为了训练 MoE,采用了与密集骨干相同的训练超参数和相同的训练设置,包括训练数据和训练 token。
2025-01-01
混合专家模型(MoE
混合专家模型(MoE)是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大而复杂的任务拆分成多个小而简单的任务,让不同的专家网络负责处理不同的任务,这样能提高模型的灵活性、可扩展性,减少模型的参数量和计算量,从而提升模型的效率和泛化能力。 MoE 架构的实现通常包含以下步骤: 1. 定义专家网络:先定义多个专家网络,每个负责特定任务或数据集,这些网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据训练每个专家网络,获取其权重和参数。 3. 分配数据:在训练中,将输入数据分配给不同专家网络处理,分配方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:对每个专家网络的输出结果进行加权求和,得到最终输出。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域应用广泛。 在苹果大模型 MM1 中也应用了 MoE 架构。研究者使用三种不同类型的预训练数据,构建了参数最高可达 300 亿的多模态模型系列 MM1,它由密集模型和混合专家(MoE)变体组成,在预训练指标中实现 SOTA,在一系列已有多模态基准上监督微调后也能保持有竞争力的性能。在 MM1 的最终模型和训练方法中,通过专家混合(MoE)进行扩展,将密集语言解码器替换为 MoE 语言解码器,并采用与密集骨干相同的训练超参数和设置进行训练。
2025-01-01
文章提取器
以下是关于文章提取器的相关内容: Yeadon 提出了利用 Cursor+Coze 工作流打造网页内容提取插件的方法。Cursor 是具有 AI 功能的革新性代码编辑器,Coze 工作流是可视化的组合工具。该插件的功能需求包括对当前网页链接的提取、LLM 对网页内容的总结、LLM 输出三个变量(主角、文章概括、金句提取)、通过图片搜索工具搜主角图片以及进行排版得到图文总结卡片。 小七姐介绍了 MetaPrompt 用于文章风格提取,可抽取不同风格文章的核心要素作为 prompt 进行风格迁移。已抽取的风格包括万维钢、史铁生、李娟、许倬云、鲁迅、王小波等,还提到了飞书多维表格工作流自动化抽取的使用方法,以及相关的测评和彩蛋等内容。
2025-04-07
有没有可以抓取公众号文章的 agent
以下是一些可以抓取公众号文章的方法和相关信息: 1. 可以通过读 SQLiteDB 或者获取 RSS XML 页面(http://127.0.0.1:4000/feeds/all.atom)来获取更新的公众号。个人选择在公众号订阅不太多时,建议使用分析 XML 页面,比较简单。可以写个程序获得公众号的更新文章,由于本地部署,无法直接将文章同步到 Coze,所以选择使用多维表格(当在线数据库,事实飞书多维表格后台也是使用类似 redis 或 TiDB 这样的数据库实现的)及飞书机器人 API 的方式来实现中间数据的传递。只要在多维表格中设置一个状态转换,就可以知道文章是否已经被解读和推送。 2. 可以通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答。例如使用 Docker 浏览器打开:http://127.0.0.1:4000 也可以 http://wewerss 服务的 IP:端口为上面设置的外部端口。先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号。然后在公众号源上,点添加。然后将想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(经测试最好不要超 40 个)。 3. 瓦斯阅读平台可以抓取公众号的内容,但平台上公众号不太全。 4. GitHub 上的 WeWe RSS 工具可以通过微信读书的方式订阅公众号。
2025-04-05
3月最新的文章创作提示词
以下是 3 月最新的文章创作提示词相关内容: 云舒的文章总结卡 2.0 提示词:全面支持 DeepseekV3,效果媲美 Claude3.7,新增竖版卡片方便手机阅读。支持 Claude3.7 及 DeepseekV3,V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号。提示词复制链接:。包括横版(1080 x 800 卡片提示词)和竖版(750 x 不限高卡片提示词)。抽卡平台方面,各平台均需下载 html 文件,打开后才能查看真实效果,平台自带预览因兼容性问题无法正常展示效果。Claude 使用平台包括 Claude3.7 官网、API、Cursor,使用时需要下载为 HTML 文件打开查看效果,Claude 的预览暂时无法支持查看真实效果。Deepseek 使用平台包括 Deepseek 官网、API(V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号),Deepseek 需要复制代码到 html 文件里,然后保存进行查看。Cursor 微调增加图片时,将下载的 html 文件及图片放到同一个文件夹即可。 2025 年 3 月 12 日的更新:《》归藏的这篇文章介绍了一套简单易用的提示词,可以将任何文档快速转化为精美的网页杂志,适合各行各业。只需复制文本并添加图片、视频链接,即可轻松生成视觉吸引力强的作品。无论是旅行攻略、求职简历还是明星介绍,这些网页都能让信息更直观、条理更清晰。 韦恩用 DeepSeek V3 做的实验:作者好奇 DeepSeek V3 能否很好地遵循设计,输出确定性的内容,于是做了一个企业交付相关的实验。创作过程包括想法到动手、改变策略、寻求建议、基本满意了等阶段。开始效果不稳定,下载封面图片会变形,后来改为 HTML 转图片,效果比较稳定,并在公众号里测试效果良好,解决了公众号水印影响美观的问题。
2025-03-31
文章逆向提示词
以下是关于文章逆向提示词的相关内容: 1. 对于让 ChatGPT 模仿任何作家,完美续写红楼梦的逆向提示词,需要尝试将乔布斯在斯坦福大学的演讲转化为提示词。具体要求包括提炼文章的语气、写作风格、用词、句式等各种写作要素,生成能让 ChatGPT 以任意主题写出类似风格文章的提示词。 2. 在 SD 文生图中,写提示词时,括号和特定符号用于增加权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。同时,还可以增加反向提示词告诉 AI 不要的内容。 3. 关于 ChatGPT 的逆向提示词,还有“对抗性演练”的技巧,即让 ChatGPT 扮演两个截然不同的角色展开激烈辩论,通过多轮辩论整合争论点形成更全面精准的提示词。以文章原创度问题为例,文章原创度检测包括从互联网或文章库中定位相似内容,并评估文章与搜索出内容的相似程度这两大步骤。细分来说,文章会被细分为小句或段落,提炼关键词或词组在网络或专业数据库中搜寻相似内容。
2025-03-31
如何利用AI大模型 撰写政研文章
利用 AI 大模型撰写政研文章可以参考以下方法: 一、了解大模型的热门应用场景 大模型因其强大的语言理解和生成能力,在多个领域有出色表现,以下是一些热门应用场景: 1. 文本生成和内容创作:可用于撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:能开发与人类自然对话的工具,提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:实现代码自动补全、bug 修复和代码解释,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体、评论和反馈中的文本,识别用户情感和观点,为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 8. 游戏开发和互动体验:用于创建游戏角色对话、故事情节生成和增强玩家沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 需要注意的是,随着技术进步和模型优化,大模型未来可能拓展到更多领域,同时也要注意其在隐私、安全和伦理方面的挑战。 二、利用 AI 辅助写作政研文章的步骤和建议 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成政研文章的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写文章各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查文章的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保文章的原创性,并进行最后的格式调整。 请记住,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用时应保持批判性思维,确保研究质量和学术诚信。 三、Flowith 模型的优势 Flowith 模型具有以下优势: 1. 充分利用已有知识:可快速检索高质量的“存量知识”,将分散内容重新提炼、整合并利用,避免重复劳动。 2. 提高回答的准确性和完整度:基于检索与引用的方法,通过引用已有文章的论证、数据或实例,为回答提供更扎实依据,使观点更系统、逻辑更完整。 3. 节省时间,提升效率:面临类似或相关问题时,无需从头构思或反复写作,AI 大模型利用已有输出内容提供启发,减少精神内耗,避免拖延。 4. 方便追溯与验证:所有信息来自已发布文章,读者可查看完整上下文,保证回答的透明度和可信度,也为已发布文章提供二次曝光机会。
2025-03-29
推荐些AI文章
以下是为您推荐的一些 AI 文章: 1. 《新手如何学习 AI?》 了解 AI 基本概念:建议阅读「」部分,熟悉术语和基础概念,包括主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 开始 AI 学习之旅:在「」中有为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习,比如图像、音乐、视频等,掌握提示词技巧。 实践和尝试:理论学习后通过实践巩固知识,在知识库分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动。 2. 《01通往 AGI 之路知识库使用指南》 包括关于 AI 知识库使用及 AIPO 活动的介绍,AIPO 线下活动及 AI 相关探讨,way to AGI 社区活动与知识库介绍,关于 AI 知识库及学习路径的介绍,时代杂志评选的领军人物,AI 相关名词解释,知识库的信息来源,社区共创项目,学习路径,经典必读文章,初学者入门推荐,历史脉络类资料等内容。 3. 《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》 上篇文章解决了 Why 的问题,此次解决 What 和 How 的问题。 推荐两个视频: 【包教包会】一条视频速通 AI 大模型原理_哔哩哔哩_bilibili](女神)主讲,和某知识 up 主 Genji 一起制作的免费公益课,50 分钟速通 AI 大模型原理。 ,某知识 up 主老石谈芯专访安克创新 CEO 阳萌的视频,一共两期,内容值得观看。
2025-03-28