Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么测评大模型可用性的自动化方案吗

Answer

评估大型模型的可用性是一个复杂的过程,涉及到多个方面的考量,包括准确性、效率、稳健性、可解释性和伦理等。虽然目前没有一个统一的自动化方案能够全面评估所有方面,但是有一些工具和方法可以用于自动化评估模型的某些特性。以下是一些常用的自动化方案和工具:

  1. 单元测试和集成测试:对于模型的不同组件,可以使用单元测试来验证其是否按预期工作。集成测试则可以确保不同组件在一起时也能正常工作。
  2. 基准测试和数据集:使用标准的数据集和基准测试来评估模型的性能。例如,对于自然语言处理模型,可以使用GLUE、SuperGLUE或SQuAD等数据集。
  3. 模型卡片(Model Cards):模型卡片是一种文档,用于记录模型的性能、训练数据和预期的使用场景。这可以帮助用户了解模型的适用性和限制。
  4. 连续集成/连续部署(CI/CD):使用CI/CD工具来自动化模型的测试和部署过程。例如,使用Jenkins、GitHub Actions或GitLab CI/CD来自动化测试和部署流程。
  5. 自动化性能监控:使用工具如Prometheus和Grafana来监控模型的性能指标,如延迟、吞吐量和准确性。
  6. 自动化回归测试:使用工具来定期运行回归测试,以确保模型的更新不会引入新的错误。
  7. 可解释性和可视化工具:使用工具如LIME、SHAP或Captum来解释模型的决策,并使用TensorBoard等工具来可视化模型的训练过程。
  8. 伦理和偏见检测:使用工具来检测模型输出中的偏见和伦理问题。例如,可以使用IBM的AI Fairness 360工具来检测和减轻机器学习模型中的偏见。
  9. 模拟和沙盒环境:在模拟环境中测试模型的性能,以避免在实际部署中出现问题。
  10. 云服务和平台:使用云服务提供商(如AWS、Google Cloud Platform、Azure)提供的自动化工具来部署和管理模型。

虽然这些工具和方法可以自动化评估模型的某些方面,但通常还需要人工参与来综合评估模型的可用性,特别是在涉及模型的可解释性和伦理问题时。因此,自动化方案应该与人工审核相结合,以确保模型的全面评估。

Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
2024年度中文大模型基准测评报告
以下是关于 2024 年度中文大模型基准测评报告的相关信息: 2024 年 7 月 10 日: 《SuperCLUE:中文大模型基准测评 2024 年上半年报告》指出,2024 年上半年中文大模型技术取得显著进展,国内外模型差距缩小至 5%以内。国内开源模型如 Qwen272B 表现优异,超越众多闭源模型。端侧小模型发展迅速,落地可行性大幅提升。该报告通过多维度、多层次测评体系,全面评估了大模型的通用能力和专项能力,为行业发展提供了客观数据支持。同时也指出,尽管大模型在多领域展现潜力,但仍面临技术挑战和应用落地问题。 2024 年 11 月 8 日: SuperCLUE 团队发布的新一期《SuperCLUE:中文大模型基准测评 2024 年 10 月报告》中有四点核心发现:1)OpenAI 发布 o1 后,全球大模型竞争加剧;2)国内大模型第一梯队竞争激烈,持续迭代表现不俗;3)国内外大模型在不同任务上表现各有优势;4)端侧小模型表现惊艳。 此外,Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】的参考文献包括: T.Shen,R.Jin,Y.Huang,C.Liu,W.Dong,Z.Guo,X.Wu,Y.Liu,和 D.Xiong,“大型语言模型对齐:一项调查”,arXiv 预印本 arXiv:2309.15025,2023 年。 X.Liu,X.Lei,S.Wang,Y.Huang,Z.Feng,B.Wen,J.Cheng,P.Ke,Y.Xu,W.L.Tam,X.Zhang,L.Sun,H.Wang,J.Zhang,M.Huang,Y.Dong,和 J.Tang,“Alignbench:大型语言模型中文对齐的基准测试”,2023 年。 P.Christiano,J.Leike,T.B.Brown,M.Martic,S.Legg,和 D.Amodei,“基于人类偏好的深度强化学习”,2023 年。 T.Yu,Y.Yao,H.Zhang,T.He,Y.Han,G.Cui,J.Hu,Z.Liu,H.T.Zheng,M.Sun,和 T.S.Chua,“RLHFV:通过细粒度校正人类反馈实现可信赖的 MLLMs 行为对齐”,2023 年。 M.S.Jahan 和 M.Oussalah,“使用自然语言处理进行仇恨言论自动检测的系统综述。”,《神经计算》,第 126232 页,2023 年。 OpenAI,“Sora 安全。”https://openai.com/sorasafety,2024 年。
2024-12-27
RAG 如何测评?
RAG(检索增强生成)的测评方法如下: 1. 可以使用 TruLens 来实现 RAG 三角形的评估方法,具体步骤为: 在 LangChain 中,创建一个 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中,创建一个 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可以使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可以自定义。 使用 with 语句来运行 RAG 对象,并记录反馈数据。输入一个问题,得到一个回答,以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标,评价 RAG 的表现。 2. 评估 RAG 生成的文本质量,常用的评估方法包括自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,以衡量生成文本的流畅性、准确性和相关性。 3. 评估 RAG 检索的效果,包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 4. 通过用户调查、用户反馈和用户交互数据来实现用户满意度评估。 5. 对于生成多模态内容的 RAG 系统,需要通过多模态评估指标来评估不同模态之间的一致性和相关性。 6. 对于需要实时更新的 RAG 任务,要考虑信息更新的及时性和效率进行实时性评估。 7. 为了进行客观的评估,通常会使用基准测试集来进行实验和比较不同的 RAG 系统。这些基准测试集包含了多样化的任务和查询,以涵盖不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景。综合使用多种评估方法可以更全面地了解 RAG 系统的性能和效果,评估结果可以指导系统的改进和优化,以满足用户的需求。
2024-12-13
SuperCLUE半年度测评报告
以下是关于 SuperCLUE 半年度测评报告的相关内容: 趋势说明: 过去半年,国内领军大模型企业实现了代际追赶。7 月与 GPT3.5 有 20 分差距,之后每月稳定且大幅提升,11 月总分超越 GPT3.5。GPT3.5 和 GPT4 在中文表现上基本一致,11 月有下滑,国内头部模型持续稳健提升。12 月国内第一梯队模型与 GPT4 差距缩小,但仍需追赶。部分国内代表性模型 7 月至 12 月的得分情况为:文心一言 50.48、54.18、53.72、61.81、73.62、75;通义千问 41.73、33.78、43.36、61.01、71.78;ChatGLM 42.46、38.49、54.31、58.53、63.27、69.91。 测评方法: 采用多维度、多视角的综合性测评方案,包括多轮开放问题 SuperCLUEOPEN 和三大能力客观题 SuperCLUEOPT。评测集共 4273 题,其中 1060 道多轮简答题(OPEN),3213 道客观选择题(OPT)。OPEN 基准使用超级模型作为评判官,对比待评估模型与基准模型,计算胜和率作为 OPEN 得分。OPT 主要测评选择题,包括基础能力、中文特性、专业与学术能力,构造统一 prompt 供模型使用,要求选取唯一选项。SuperCLUE 总分由 0.7OPEN 分+0.3OPT 分计算得出。 第三方测评特点: SuperCLUE 始终秉持中立、客观的第三方测评理念,采用自动化方式的客观评估,降低人为评估的不确定性。测评方式与真实用户体验目标一致,纳入开放主观问题测评,通过多维度多视角多层次的评测体系和对话形式,模拟应用场景,考察模型生成能力,构建多轮对话场景,全方位评测大模型。同时,不限于学术领域的测评,旨在服务产业界,从多个维度的选择和设计到行业大模型测评基准的推出,都是为产业和应用服务,反映通用大模型与产业应用的差距,引导大模型提升技术落地效果。
2024-09-20
对AI功能的新型用户体验测评
以下是关于 AI 功能新型用户体验测评的相关内容: 生成式 AI 的第二阶段: 新的开发者工具和应用框架为公司创建更先进的 AI 应用提供可重用构建块,并帮助评估、改进和监控生产中的 AI 模型性能,如 Langsmith 和 Weights & Biases 等 LLMOps 工具。 AIfirst 基础设施公司如 Coreweave、Lambda Labs、Foundry、Replicate 和 Modal 正在解除公共云的捆绑,提供大量 GPU 及良好的 PaaS 开发者体验。 生成式 AI 优先的用户体验在进化,包括新兴产品蓝图,如从基于文本的对话用户体验到新的形态如 Perplexity 的生成用户界面、Inflection AI 的语音发声等新模态,以及新的编辑体验如 Copilot 到导演模式,还有像 Midjourney 的新平移命令和 Runway 的导演模式创造的新相机般编辑体验,Eleven Labs 使通过提示操作声音成为可能。 Top100 AI 消费者应用(第三版): 字节跳动于 2023 年底成立专注于生成式 AI 应用的研发部门 Flow,并从 2024 年初开始以其他公司名义在美国及海外推出新的 AI 应用。 在网页和移动端,新类别为审美和约会,包括三家新进入者 LooksMax AI、Umax 和 RIZZ。LooksMax 和 Umax 采集用户照片进行评分并给出“建议”,Umax 生成用户 10 分满分照片,LooksMax 分析用户声音确定吸引力。LooksMax 声称拥有超 200 万用户,Umax 声称拥有 100 万用户。 生成式 AI:下一个消费者平台: AI 能使产品个性化用户体验,早期应用已出现在教育科技和搜索中,预计这种定制将是许多 AI 启用产品的核心价值主张。后续文章将更深入研究相关领域,并分享评估消费者 AI 公司时提出的问题。
2024-08-28
国内外大模型测评
以下是关于国内外大模型测评的相关内容: 在 2023 年度的中文大模型基准测评中: 国内外大模型总体表现方面,90.63 分遥遥领先,高于其他国内大模型及国外大模型。国内最好模型文心一言 4.0(API)总分 79.02 分,距离 GPT4Turbo 有 11.61 分,距离 GPT4(网页)有 4.9 分的差距。过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 和 Qwen 72BChat、OPPO 的 AndesGPT、清华&智谱 AI 的智谱清言、字节跳动的云雀大模型等。在 SuperCLUE 测评中,国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,且国内外平均水平差距在缩小,11 月差距在 10 分左右。阿里云的 Qwen72B、Yi 34BChat 均优于 Llama213BChat。 国内大模型竞争格局方面,从大厂和创业公司的平均成绩来看,大厂与创业公司差值约 6.33 分,较 11 月份差距在增大,说明大厂在大模型竞争中长期资源投入方面有一定优势。过去八个月国内模型在 SuperCLUE 基准上的前三名情况如下:12 月和 11 月的第一名是文心一言 4.0,10 月第一名是 BlueLM,9 月第一名是 SenseChat3.0,8 月第一名是 Baichuan213BChat,7 月第一名是文心一言(网页 v2.2.0),6 月第一名是 360 智脑,5 月第一名是 360 智脑。第二名在不同月份分别是通义千问 2.0、Moonshot 等。 主观和客观对比方面,通过对比模型在主观简答题 OPEN 和客观选择题 OPT 上的不同表现,国内大模型多数擅长做选择题,普遍选择题分数高于简答题分数。文心一言 4.0 和智谱清言表现相对稳定,分别为(13.38)和(14.01),GPT4 Turbo 的表现最为稳定,差值仅有 0.86。SuperCLUE 认为,客观题相对主观题更容易通过题库形式进行训练和提升,同时由于客观题中包含中文特性问题,中文模型有一定优势,应综合来看模型的评测效果。国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 都有很好的稳定性表现,值得国内大模型进一步分析研究。
2024-08-15
请问可以用什么方法,让电脑自动完成多线程任务,实现自动化办公。
在实现电脑自动完成多线程任务以达到自动化办公的目标方面,以下是一些常见的方法: 1. 使用编程语言:如 Python、Java 等,通过相关的多线程库和模块来创建和管理多线程任务。 2. 利用自动化工具和框架:例如 AutoIt、Selenium 等,它们提供了一些功能来实现自动化操作和多线程处理。 3. 借助操作系统的任务调度功能:在 Windows 系统中可以使用任务计划程序,在 Linux 系统中可以使用 cron 任务调度器来安排多线程任务的执行。 需要注意的是,在进行多线程任务的设计和实现时,要合理规划资源分配、避免线程竞争和死锁等问题,以确保系统的稳定性和高效性。
2025-01-06
AI驱动的自动化任务在PC端
以下是为您介绍的两个与 AI 驱动的自动化任务在 PC 端相关的产品: 1. Design Buddy:这是一个 Figma 插件,作为协作伙伴发挥作用,能对 UI 设计提供深入反馈。它涵盖布局、颜色、排版、可访问性等方面的结构化评论,并为每个类别分配客观评分,有助于识别 UI 设计中常被忽视的缺陷,减少未来修订需求。 2. AI Employe:这是一个开源、由 GPT4 视觉驱动的工具,用于自动化浏览器环境中的复杂任务。用户可通过在浏览器中概述和演示任务来创建工作流程,它能自动执行类人智能任务,如理解电子邮件、收据和发票,并将数据从电子邮件传输到 CRM/ERP 系统,只记录浏览器更改,不捕获屏幕、麦克风或摄像头,还能从图表、复杂表格和基于图像的 OCR 提供独特见解。
2024-12-26
请推荐给我一些AI工具,我主要从事自动化行业
以下是为您推荐的一些适用于自动化行业的 AI 工具: 1. AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 2. 图片处理:DallE、Leonardo、BlueWillow、Midjourney 3. 版权写作:Rytr、Copy AI、Wordtune、Writesonic 4. 设计:Canva、Clipdrop、Designify、Microsoft Designer 5. 网站搭建:10Web、Framer、Hostinger、Landingsite 6. 视频处理:Klap、Opus、Invideo、Heygen 7. 音频处理:Murf、LovoAI、Resemble、Eleven Labs 8. SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 9. Logo 设计:Looka、LogoAI、Brandmark、Logomaster 10. 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 11. 自动化工具:Make、Zapier、Bardeen、Postman 此外,在小型企业服务方面,以下生成式 AI 工具也可能对您有所帮助: 1. 电话预约与短信、电子邮件、聊天处理:Sameday、Truelark 2. 后台办公室管理:Osome 3. 创建完整专业网站:Durable 4. 通用内容创建:Jasper、Copy、Writer 5. 法律团队任务自动化:Harvey、Spellbook 6. 房地产行业相关:Interior AI(虚拟布置房产)、Zuma(将潜在客户转化为预定参观)
2024-12-16
AI 自动化
AI 自动化在中小企业利用人工智能(AI)进行转型中主要体现在以下几个方面: 一、提高效率和自动化流程 任务自动化 通过任务自动化,中小企业能够显著提高工作效率,降低错误率,同时减轻员工的工作负担,使他们能够专注于更加重要和创造性的工作。 二、改善客户体验 客户服务自动化 1. 部署 AI 聊天机器人处理常见的客户咨询: 根据企业的特定需求和预算,选择合适的 AI 聊天机器人解决方案。 定制聊天机器人的回答库,包括产品信息、价格查询、订单状态跟踪等。 将聊天机器人集成到企业的网站、社交媒体平台和其他客户服务渠道。 2. 通过机器人提供 24/7 客户支持,提升响应速度和服务质量: 提供全天候的客户支持,改善客户体验和满意度。 由于 AI 聊天机器人无需休息,可提供 24 小时服务,确保客户随时获得所需信息。 相比人工客服,机器人能提供更快的响应速度,减少客户等待时间。 定期监控聊天机器人的性能,如解答准确性、客户满意度,并根据反馈进行优化。 分析聊天记录和客户反馈,以识别机器人性能的改进点。 随着 AI 技术的发展,定期更新聊天机器人的算法和知识库,提高其效能和准确性。 三、提升市场营销效果 营销自动化 1. 实施基于 AI 的营销自动化工具: 通过自动化工具提高营销活动的效率和一致性,减少人工工作量。 选择能够满足企业特定需求的 AI 营销自动化工具,如自动化电子邮件平台、社交媒体管理工具等。 根据目标市场和营销目标,设置和配置自动化工具,例如在电子邮件营销工具中设置触发器,当客户执行特定行为时自动发送相关邮件。 将客户数据源(如 CRM 系统)与营销自动化工具集成,实现更个性化和针对性的营销。 通过社交媒体营销工具自动发布定时内容,并根据用户互动自动调整发布计划。 2. 通过 AI 分析结果调整和优化营销内容: 利用 AI 工具分析营销活动的效果,如电子邮件打开率、点击率、社交媒体互动等指标。 根据分析结果,调整营销内容和策略,例如修改不受欢迎的电子邮件主题或内容,或调整社交媒体帖子的发布时间。 根据市场反应和客户行为的实时分析,持续调整和优化营销活动。 持续监控营销活动的各项指标,确保营销策略与市场趋势和客户需求保持一致。 定期更新营销自动化策略,确保其与最新的市场数据和分析结果相匹配。 通过实施营销自动化,中小企业可以有效地管理和执行复杂的营销活动,同时确保内容的相关性和吸引力。AI 的加入不仅提高了营销活动的效率,还使企业能够根据数据洞察做出更精准的营销决策。通过实施客户服务自动化,中小企业可以显著提高客户服务的效率和质量,同时降低成本。AI 聊天机器人不仅可以处理大量常规咨询,还可以释放人工客服资源,使其专注于更复杂和个性化的客户需求。
2024-12-06
视频自动化
以下是关于视频自动化的相关内容: 用 RPA 工具实现自动化 roll 视频: 现阶段 AI 生成视频的崩坏率极高,可控性差,所以 roll 视频也被称为“抽卡”。提升成功率的思路是量大管饱,自动批量 roll 视频很有必要。 以功夫熊猫为例,将需要跑视频的图片丢到一个文件夹里,然后用 RPA 工具自动刷视频。 影刀工具目前已停止个人社区版使用别人分享的应用,购买企业版较贵,可在咸鱼上买 2 元左右的 25 天创业版。 自动 roll 视频的应用开源,使用方法如下: 安装影刀:在影刀官网下载软件,安装并注册。 获取编写好的应用:复制链接到浏览器打开(https://api.winrobot360.com/redirect/robot/share?inviteKey=16d4073d4d1e9bd7),密码:lipu。 在影刀里运行应用:回到影刀,在“我获取的应用”中查看并运行。 填写对话框:程序会自动打开工具网站,填好后点“确定”开始运行。 运行时会占用鼠标和屏幕,可做其他事。 查看进度:点击日志查看 roll 视频进度。 小 Tips: 强烈建议先登录对应的 AI 视频网站后再运行应用。 首次使用未登录过的网站(如 Runway、Pixverse、Haipe、SVD 等),需登录(有 100 秒等待时间),应用不会获取账号、密码等信息。 程序默认使用 Google 浏览器运行,需自行准备。 可按快捷键提前结束,Mac:command+option+E,Windows:ctrl+alt+E。 程序可能存在 bug,使用中遇到问题可在文档评论留言或加微信 martin57 反馈。 默认一张图跑一次(节约积分),若要一张图 roll 多次,可复制图片。 视频自动字幕工具推荐: Reccloud:免费在线 AI 字幕生成工具,可上传视频精准识别,能翻译字幕生成双语字幕,处理过 1.2 亿+视频,准确率接近 100%。 绘影字幕:一站式专业视频自动字幕编辑器,提供字幕制作和翻译服务,支持 95 种语言,准确率 98%,可自定义字幕样式。 Arctime:能对视频语音自动识别并转换为字幕,支持自动打轴,支持 Windows 和 Linux 等主流平台及 SRT 和 ASS 等字幕功能。 网易见外:国内知名语音平台,支持视频智能字幕功能,转换正确率较高,支持音频转写功能。 以上工具各有特点,可根据需求选择。
2024-12-04
ai 自动化测试
以下是关于 AI 自动化测试的相关内容: AI 生成测试用例的方法和工具: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 AI Prompts 测试框架: 1. Langfuse:网站为,是一个提供全面 AI Prompts 测试解决方案的平台,允许用户设计和测试 Prompts,比较不同 Prompts 的效果,并评估 AI 模型的性能。 2. Langsmith:网站为,是一个提供全面 AI Prompts 测试解决方案的平台。允许用户设计和测试 Prompts、比较和评估不同 Prompts 的效果、集成和自动化 Prompts 测试到开发流程中。 AI 大模型在游戏中的应用: 1. 游戏的 Agent 和智能体可以对数值平衡、玩法平衡、对战机器人以及玩家模拟做很多事情。 2. 数值策划方面,通过强化学习可以进行自动化的数值和玩法平衡,用 AI 测试替代人工测试,例如卡牌游戏中,AI 测试 1000 局仅需 17 分钟,而人工需要 50 个小时,且可在测试过程中调整战斗值、防御值。 3. 玩家行为模拟方面,在自博弈的训练中让机器代表攻击方和防守方,模拟玩家的行为,最终提升玩家的留存率、在线时长、活跃度和付费率,可使用深度强化学习 DRL 训练不同等级的 AI bot 模拟玩家。
2024-12-03
有哪些优质的法律大模型数据集
以下是一些优质的法律大模型数据集: 1. ChatLaw: 地址: 简介:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B(基于姜子牙 ZiyaLLaMA13Bv1 训练而来),ChatLaw33B(基于 Anima33B 训练而来,逻辑推理能力大幅提升),ChatLawText2Vec,使用 93w 条判决案例做成的数据集基于 BERT 训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配。 2. LaWGPT: 地址: 简介:该系列模型在通用中文基座模型(如 ChineseLLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。 3. LexiLaw: 地址: 简介:LexiLaw 是一个基于 ChatGLM6B 微调的中文法律大模型,通过在法律领域的数据集上进行微调。该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询。 4. Lawyer LLaMA: 地址: 简介:开源了一系列法律领域的指令微调数据和基于 LLaMA 训练的中文法律大模型的参数。Lawyer LLaMA 首先在大规模法律语料上进行了 continual pretraining。在此基础上,借助 ChatGPT 收集了一批对中国国家统一法律职业资格考试客观题(以下简称法考)的分析和对法律咨询的回答,利用收集到的数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。
2025-01-08
免费的学术AI大模型
以下是一些免费的学术 AI 大模型: 1. 国内: 阿里、腾讯对新用户提供免费试用服务器,如腾讯云的。服务器系统配置选择【宝塔】系统。 阿里的接口,创建 API key。 也有免费接口,但大都限制一定免费额度的 Token。 2. 国外: 来操作。 此外,ProductHunt 2023 年度最佳产品榜单中的免费 AI 模型有: 1. GPT4(免费可用)——与人类水平相当的 LLM。 2. Midjourney v5(免费)——令人惊叹的逼真 AI 图像以及五指手。 3. DALL·E 3(免费可用)——轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费)——迄今为止最优秀的 70 亿参数模型,Apache 2.0。 智谱·AI 开源模型列表可参考。Token 数代表了模型支持的总 Token 数量,包括输入和输出的所有 token,且一个 token 约等于 1.8 个汉字。
2025-01-08
跑本地大模型有哪些用处?
跑本地大模型具有以下用处: 1. 支持多种大型语言模型:如通义千问、Llama 2、Mistral 和 Gemma 等,可应用于不同场景。 2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,方便在本地环境中启动和运行。 3. 丰富的模型库:提供多种不同参数和大小的模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 4. 自定义模型:能通过简单步骤修改模型的温度参数等以调整创造性和连贯性,或设置特定系统消息。 5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 Ollama 是一个开源框架,旨在简化本地运行大型语言模型的过程。它是轻量级、可扩展的,提供简单 API 创建、运行和管理模型,还有预构建模型库,降低使用门槛,适合初学者和非技术人员,适用于自然语言处理研究和产品开发。安装可通过官方下载地址 https://ollama.com/download ,安装后可通过相关链接判断是否成功。运行时在命令行输入相应命令,选择模型如 llama2 ,Ollama 会自动下载模型到本地。
2025-01-08
是不是可以跟任何大模型进行对话
一般来说,可以跟很多大模型进行对话。以下是一些常见的方式: 1. 对于 Llama3 大模型: 下载大模型主要是为了与之对话,或者称为使用其进行推理。 有两种对话方式,可使用 API 或部署简单界面。面向小白,这里主要介绍部署界面的方式。 例如,在 /root/autodltmp 路径下新建 chatBot.py 文件并输入相关内容,然后启动 Webdemo 服务,按照指示映射端口,在浏览器中打开相应链接即可看到聊天界面。 2. 对于 Llama 大模型: 首先编译,为利用 Metal 的 GPU 可用特定命令编译。 去指定网址下载模型。 llama.cpp 还提供了 WebUI 供用户使用,启动 server 后默认监听 8080 端口,打开浏览器就可以对话。 3. 对于通过 Open WebUI 使用大模型: 访问指定网址,使用邮箱注册账号。 登陆成功后,Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。如果要求不高,已实现通过 Web UI 与本地大模型对话的功能。 需要注意的是,不同大模型的访问速度和回答效果可能存在差异,例如 ChatGPT 访问速度快是因为其服务器配置高,回答效果好是因为训练参数多、数据更优以及训练算法更好。
2025-01-07
我想在dify里按照一个reranker模型,推荐哪个
在 Dify 中安装 reranker 模型,推荐使用中转服务商。Dify 的部署版本中,模型需自行配置,官方和中转的都支持,但中转服务商从性价比角度更优,充点小钱就能用上各种模型,价格通常有较大折扣,20 刀普通用户能用很久,还能在不同地方使用。若没有合适的中转服务商,可使用我自用的,点击原文即可。模型设置方面,在 Dify 右上角点击设置模型供应商,填入中转服务商提供的信息(一般包括 API base 或 Base URL 以及 key)并保存。若保存成功,回到主页面创建一个 Agent 测试,正常则大功告成。比如我填的 API base 是‘https://one.glbai.com’。
2025-01-07
文生图有哪些大模型
以下是一些常见的文生图大模型: 1. SD(StableDiffusion):如 majicmixRealistic_v6.safetensors 模型,可通过设置相关提示词、参数等生成图像。 2. 快手 Kolors:这是一个基于潜在扩散的大规模文本生成图像模型,在视觉质量、复杂语义准确性以及中英文字符的文本渲染方面有显著优势,支持中文和英文输入。其相关资源包括工作流与模型地址、文档说明、项目地址等。 开源代码:https://github.com/KwaiKolors/Kolors 模型权重:https://huggingface.co/KwaiKolors/Kolors 官方页面:https://kwaikolors.github.io/ 企业页面:https://kolors.kuaishou.com/
2025-01-07