以下是关于图生图生成高清矢量图的相关内容:
ControlNet 参数:
放大高清大图:
Lora 生图:
高清修复:
SD 放大:
预处理器:canny模型:control_v11p_sd15_canny预处理器:lineart_standard(from white bg&black line),模型:control_v11p_sd15_lineart[heading3]4、放大高清大图[content]Multi Diffusion+Tiled VAE+ControlNet Tile模型将生成的图片发送到图生图,会把关键词种子一并发送过去重绘幅度建议0.35太高图片细节发生变化,
上图中,点击预览模型中间的生图会自动跳转到这个页面模型上的数字代表模型强度,可以调节大小,正常默认为0.8,建议在0.6-1.0之间调节当然,你也可以自己添加lora文件点击后会显示你训练过的所有lora的所有轮次VAE不需要替换正向提示词输入你写的提示词可以选择基于这个提示词一次性生成几张图选择生成图片的尺寸,横板、竖版、正方形采样器和调度器新手小白可以默认这个不换迭代步数可以按照需求在20-30之间调整CFG可以按照需求在3.5-7.5之间调整随机种子-1代表随机生成图所有设置都好了以后,点击开始生态,生成的图会显示在右侧如果有哪次生成结果你觉得很不错,想要微调或者高分辨率修复,可以点开那张图往下滑,划到随机种子,复制下来粘贴到i机种子这里,这样下次生成的图就会和这次的结果近似如果确认了一张很合适的种子和参数,想要搞清放大则点开高清修复,可以选择你想放大的倍数新手小白可以就默认这个算法迭代步数也是建议在20-30之间重回幅度根据需求调整,正常来说在0.3-0.7之间调整
我们看一下高清修复下的这张画,文生图高清修复的原理其实是命令AI按照原来的内容重新画一幅,所以新生成的绘图和原来的绘图在细节上会不太一样。如果想要更接近之前的绘图,可以适当降低重绘幅度。我们来对比一下修复前后的区别,这次使用的重绘幅度为0.7,所以可以看到帽子和耳机都有了变化,想要保留原来的细节,可以尝试0.2-0.3。我们再使用重绘幅度为0.3绘制一下,可以看到服饰细节就比较接近了,但是由于重绘幅度低,手部就出现了问题。这种情况,就要通过反复抽卡,图生图局部重绘,或者生成多张图片后进ps合成等办法去解决。由于高清修复的渲染耗时比较长,所以我们一般建议先采用低分辨率进行抽卡刷图,当抽到自己比较喜欢的图之后,再使用随机种子来固定图片进行高清修复。二、SD放大第二种方式是使用图生图的脚本功能,当我们使用文生图画好一张图之后,可以将它发送到图生图。点击下面的脚本,选择使用SD放大。重绘幅度设置0.3,放大倍率为2,图块重叠的像素设置为64。这张图原本的尺寸为512x768,此时需要加上重叠像素的64,就变成了576x832。可以看到,这次的Stable Diffusion是将这张图均匀地切成了四块,然后分别渲染,最终拼接成一整张图,这种方式需要让我们重绘幅度保持在比较低的数值,不然这新生成的四张图中可能会出现新的人物。