「AGIへの道」飛書ナレッジベースへ直行 →

COZE 是基于什么框架

回答

Coze 基于以下框架构成:

  1. 提示词:使用了结构化提示词的框架,通过提示要求大模型根据不同的行为调用不同的工作流。
  2. 数据库:能够记录不同用户历史记账记录,工作流里会用到。
  3. 工作流:增加记账调用 add_accounting_record 工作流;查询账户余额调用 query_accounting_balance 工作流;删除所有记账记录调用 init_accounting_records 。

此外,还有关于 Coze 的其他信息:

  • Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。
  • 具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式等特点。
  • 目前对用户完全免费,且易于发布和分享。
AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

Coze记账管家——数据库使用教程

本bot基于三部分构成:提示词:本bot使用了结构化提示词的框架,通过提示要求大模型根据不同的行为调用不同的工作流数据库:能够记录不同用户历史记账记录的关键,工作流里会用到;工作流:增加记账调用add_accounting_record工作流;查询账户余额调用query_accounting_balance工作流;删除所有记账记录调用init_accounting_records[heading2]2、数据库[content]数据库是coze用来长久存放用户自己生成的数据的功能,我们可以通过mysql语句写入数据到数据库中,也可以从数据库中读取已存储数据用于加工或显示;本次是记账功能,定义了三个字段:item:记账的事项;字段类型stringoccurrence_time:记账发生时间;字段类型string(因为不清楚time类型是什么格式,官方文档也没写,所以用了string类型)account_change:变得的金额,即收入或花费的金额数;字段类型integer(定义的单位是分,例如1.23元,到时候记录进入数据库是123,注意这里一定要用integer类型,不能使用number,不然当金额有小数时计算会不准)(ps:这里踩坑了,刚开始理解错了单用户模式和多用户模式的区别,单用户模式就是自己记录自己的数据,多用户模式是相当于飞书文档大家一起维护一份数据,刚开始选了多用户模式,导致用户互相编辑了对方的数据)

熊猫大侠:基于COW框架的ChatBot实现步骤

插件介绍:基于Cow框架,调用GPTs的插件git地址:https://github.com/LargeCupPanda/Cow-GPTs.git[heading3]4.8 Coze[content]插件介绍:用于连接[cow](https://github.com/zhayujie/chatgpt-on-wechat)项目到[coze](https://www.coze.com/)服务,通过[coze-discord-proxy](https://github.com/deanxv/coze-discord-proxy?tab=readme-ov-file),以免费获得ChatGPT-4.0和DALL·E 3的功能。git地址:https://github.com/MasterKeee/coze.git

问:Coze (扣子)是什么?

Coze是由字节跳动推出的AI聊天机器人和应用程序编辑开发平台,专为开发下一代AI聊天机器人而设计。它旨在简化AI机器人的开发过程,使得无论是开发者还是非技术用户,都能够快速搭建基于AI模型的各类问答Bot,处理从简单问答到复杂逻辑对话的任务。Coze平台的主要特点包括:1.多语言模型支持:Coze使用了大型语言模型,如GPT-4-8K和GPT-4-128K,并提供了云雀语言模型等,以支持不同场景下的对话和交互。2.插件系统:平台集成了超过60款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,以扩展Bot的能力。3.知识库功能:Coze允许用户上传和管理数据,支持Bot与用户数据交互,可以上传TXT、PDF、DOCX、Excel、CSV格式的文档,或基于URL获取在线内容和API JSON数据。4.数据库和记忆能力:Coze提供了数据库功能,允许Bot访问会话内存和上下文,持久记住用户对话中的重要参数或内容。5.工作流设计:用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,Coze提供了大量灵活可组合的节点,如大型语言模型(LLM)、自定义代码、判断逻辑等。6.多代理模式:在一个机器人中可以运行多个任务,允许添加多个代理,每个代理都是一个能够独立执行特定任务的智能实体。7.免费使用:Coze目前对用户是完全免费的,用户可以利用其强大的功能而无需支付费用。8.易于发布和分享:用户可以将搭建的Bot发布到各类社交平台和通讯软件上,让更多的用户与之互动。Coze平台的设计降低了大模型使用的门槛,提供了丰富的工具和资源,以支持快速开发和部署AI聊天机器人,满足不同用户的需求。

他の質問
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
prompt 框架
以下是关于 prompt 框架的相关内容: 格式: 常见的格式包括 Markdown(兼容性强,适用于写公众号文章、百家号文章等)、无序列表、有序列表、表格(更清晰直观,适用于对比数据等)、图片(具有随机性,可搭配生成 PPT)、二维码(将链接以二维码图片展示)、Latex 公式(面对数学问题时使用,能渲染出美观的公式,但目前官网对于行内公式的渲染不稳定)、代码(适合程序员指定需要撰写的代码,也方便复制内容)、JSON 格式(ChatGPT 可以以结构化数据形式输出信息,方便应用程序处理和解析,常用于程序员开发应用程序调用 API 时)。 关键框架: ICIO 框架:包括指令(执行的具体任务)、背景信息(提供执行任务的背景和上下文)、输入信息(大模型需要用到的信息)、输出信息(明确输出的具体要求,如字数、风格、格式)。 BROKE 框架:通过 GPT 的设计提示提升整体反馈效率,包括提供足够背景信息、角色设定、目标明确、结果定义、调整。 CRISPIE 框架:包括能力和角色(期望大模型扮演的角色洞察,提供幕后洞察力、背景信息和上下文)、声明(简洁明了的说明希望完成的任务)、个性(回应的风格、个性或者方式)、实验(提供多个回答的示例)。 律师使用 Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):例如,你是一名专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):直接明确期望 AI 完成的任务,如要求 AI 总结此案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):明确希望 AI 以什么风格或方式回答。 Experiment(举例)。 零样本思维链(Zero Shot Chain of Thought,ZeroshotCoT):研究了 CoT prompting 的后续发展,引入了一种简单的零样本提示方法。在问题结尾添加相关提示词,能让大语言模型生成回答问题的思维链,并从中提取出更准确的答案。
2025-04-10
分析程序员在AI能力上的不同维度,比如AI框架,AIPrompt等
以下是对程序员在 AI 能力上不同维度的分析,包括 AI 框架和 AI Prompt 等方面: AI 框架: PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,是一个集中化平台,便于在 AI 项目中管理提示,实现协作和工作流程优化。具有本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具等特点。开发指向: ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。允许用户进行快速而有效的提示想法测试和变化,具有多模型测试、响应质量比较、评估指标设置、多对话管理等特点。开发指向: AI Prompt: Promptknit:为 AI Prompts 测试提供服务的平台,可能提供工具和资源来帮助用户设计、测试和优化 AI 模型的提示。网站: 对于律师等法律人写好 Prompt 的建议: 明确 Prompt 是给人工智能(AI)系统提供的信息或问题,用来引导其产生特定回答或执行特定任务。 建议框架及格式:CRISPE 包括 Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。例如,在处理合同纠纷案件时,为 AI 赋予角色和能力,提供背景信息和上下文,明确期望其完成的任务,设定回答风格等。
2025-04-09
提示词框架
以下是关于提示词框架的相关内容: 一、Vidu Prompt 基本构成 1. 提示词基础架构 主体/场景 场景描述 环境描述 艺术风格/媒介 调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述。 避免模糊的术语表达,尽可能准确。 使用更加流畅准确的口语化措辞,避免过度文学化的叙述。 丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 提示词与画面联想程度的说明 为了帮助更好地理解,使用单帧图像作为例子介绍提示词与画面联想的关系。 基础词:玻璃桌上的咖啡杯,杯子外面写着单词 LOVE。 适度联想扩充:花园里(具体的位置描述)的透明(材质描述)玻璃桌上的咖啡杯,杯子外面写着单词 LOVE,周围满是盛开的鲜花(具体的位置描述/环境描述),和煦的阳光洒满整个花园(环境描述),Claude Monet(艺术家风格),印象派风格(艺术流派风格)。 联想关键点: 具体详实的位置描述/环境描述:笼统来讲就是在进行构图,可以帮助构建画面的基本呈现效果。 艺术风格描述:进一步提升效果和氛围,统一画面风格。 二、小七姐:Prompt 喂饭级系列教程小白学习指南(二) 如果拿到由四个词语组成的提示词框架无从下手,可以这样做: 恭喜你,写出了第一个提示词,它是: 请告诉我如何用下列四个词编写一个框架性的提示词(prompt)? 情境: 任务: 行动: 结果: 请回忆写出这条提示词的过程。 最后复习本节课的三步走: 1. 懂原理 2. 找需求 3. 用框架 下课啦~ 我是 prompt 学习者和实践者小七姐,欢迎链接我交流 prompt 相关知识:se7en319
2025-04-01
形成指令让AI根据我的论文框架写论文
以下是为您提供的让 AI 根据论文框架写论文的相关指导: 1. 提供详细的背景信息:如您的个人经历、研究主题等,类似于“我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年……”这样具体且全面的描述。 2. 结构化组织内容:使用编号、子标题和列表来使论文条理清晰,例如规定概述内容解读结语的结构,或者分标题阐述不同部分。 3. 明确文章结构:包括开门见山且能引起目标群体悬念的标题,说清楚要解决的问题及背景、可能导致的损失的第一部分,以案例引入的第二部分,对案例进一步分析的第三部分,以及给出具体操作建议的第四部分。 4. 丰富细化内容:先让 AI 写故事概要和角色背景介绍并做修改,然后一段一段进行细节描写,可采用让 AI 以表格形式输出细节描述的技巧,确保内容具体且前后一致。 5. 注意语言风格:可以自己定义,也可以根据文章生成对应语言风格关键词让 AI 遵循。 6. 遵循相关要求:比如某些比赛对作品的字数、修改限制等。 需要注意的是,虽然可以利用 AI 辅助写作,但并非提倡这是道德的使用方式。同时,如果是接收方,最好为组织准备好迎接各种 AI 生成的内容。
2025-03-30
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28