「AGIへの道」飛書ナレッジベースへ直行 →

RAG 案例

回答

以下是为您提供的关于 RAG 案例的相关内容:

在商业化问答场景中,存在大模型根据知识库回复不准确的情况,如回答牛头不对马嘴、未依据正确内容回答等错误场景,这凸显了优化大模型根据知识库回答准确性的重要性,而在 AI 领域中,此优化过程称为 RAG。

RAG(Retrieval-Augmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。

在案例研究中:

  • 案例 B 中,用户查询特定研究论文中的“表格 8”及所列因变量,ChatDOC 能有效检索整个表格,包括标题和内容,准确响应查询,而 Baseline 模型未检索到真正的“表格 8”。
  • OpenAI 在提升 RAG 准确率方面,从 45%开始,尝试多种方法,如假设性文档嵌入和精调嵌入等效果不理想,通过调整信息块大小、嵌入不同内容部分、Reranking、对不同类别问题特别处理、提示工程、查询扩展等方法,最终达到 98%的准确率,强调了模型精调和 RAG 结合使用的潜力。
AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

其中,她是陈美嘉,这里是人设中的设定。吵架的经过是知识库中的内容。在我提问了之后,大模型去知识库里找到了相关内容,然后回复了我。这就是一个简单的正确回复的demo示例。然而,我们会发现,有时候她的回答会十分不准确。图二明显回答的牛头不对马嘴。图三是知识库截图,其中是有“一菲为美嘉找了一份助教工作”的内容的。但是回答这个问题时,AI并没有根据正确的知识库内容回答。这,就是基于知识库问答中的一个非常常见的错误场景。在其他情况下,甚至有可能出现报价错误、胡编乱造等等。这在严肃场景中,是不能接受的出错。现在应该能够直观的理解,为什么需要让大模型根据知识库回答的更加准确、更符合我们的要求。在AI领域中,优化AI更准确回答问题的过程,有一个更加专业的术语,叫做RAG。接下来,咱们进入正题,一步一步探索,如何优化回答。二、基础概念如果我们要优化幻觉问题和提高准确性,就务必要了解清楚从“问题输入”--“得到回复”,这个过程中,究竟发生了什么。然后针对每一个环节,逐个调优,以达到效果最佳化。因此,我们先深入其中了解问答全貌。[heading3]1、RAG介绍[content]RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合信息检索和文本生成能力的技术,它由两部分组成:一个“检索器”和一个“生成器”。检索器从外部知识中快速找到与问题相关的信息,生成器则利用这些信息来制作精确和连贯的答案。这种结合使得RAG非常适合处理需要广泛知识的任务,如问答系统,能够提供详细而准确的回答。

通过增强PDF结构识别,革新检索增强生成技术(RAG)

案例B中,用户要查询的是一篇特定的研究论文。该查询要求系统识别论文中的“表格8”,并列举它所列出的所有因变量。表格的标题和内容对于识别这些变量都是必需的。图11和图12显示了ChatDOC和Baseline模型在该案例中的表现。图11 ChatDOC模型在研究论文中定位特定表格的结果(原始文档:[7])图12 Baseline模型在研究论文中定位特定表格的结果(原始文档:[7])ChatDOC有效地检索了整个表格,包括其标题和内容。这种全面的检索使其能够准确地响应查询。Baseline模型没有检索到真正的“表格8”,而只检索到“表格7”下面的文本块(因为它包含“表格8”的文本)。由于Baseline模型的分割策略,“表格8”的内容和同一页面上的其他内容被合并为一个大的分块。这个分块中混合了不相关的内容,与查询的相关性系数较低,因此不会出现在检索结果中。这个案例突出了ChatDOC处理复杂文档结构的卓越能力,以及它在检索特定片段以获得准确响应方面的作用。

大模型RAG问答行业最佳案例及微调、推理双阶段实现模式:基于模块化(Modular)RAG自定义RAG Flow

上面的章节提到了了很多论文,论文的特点决定了他们的方法更多的是从细节出发,解决具体的细节问题。而RAG是更是一个在工业领域大放异彩的技术,下面我们将从RAG Flow的角度介绍几个行业最佳的RAG实践,看看在真实应用场景下应该如何构建RAG Flow。[heading3]1、OpenAI[content]从OpenAI Demo day的演讲整理所得,并不能完全代表OpenAI的实际操作。在提升RAG的成功案例中,OpenAI团队从45%的准确率开始,尝试了多种方法并标记哪些方法最终被采用到生产中。他们尝试了假设性文档嵌入(HyDE)和精调嵌入等方法,但效果并不理想。通过尝试不同大小块的信息和嵌入不同的内容部分,他们将准确率提升到65%。通过Reranking和对不同类别问题特别处理的方法,他们进一步提升到85%的准确率。最终,通过提示工程、查询扩展和其他方法的结合,他们达到了98%的准确率。团队强调了模型精调和RAG结合使用时的强大潜力,尤其是在没有使用复杂技术的情况下,仅通过简单的模型精调和提示工程就接近了行业领先水平。

他の質問
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景如知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-03
请找到 AI 用于知识管理的案例
以下是一些 AI 用于知识管理的案例: 1. 在法学领域,当模型培训针对组织内特定的基于文本的知识体系进行微调时,生成式人工智能可以有效地管理组织的知识。例如摩根士丹利正在与 OpenAI 的 GPT3 合作,微调财富管理内容的培训,以便财务顾问既可以搜索公司内部的现有知识,又可以轻松地为客户创建量身定制的内容。 2. 在构建高效的知识管理体系方面,可以通过一系列创新的 AI 应用来实现。比如,AI 可以通过分析工作模式和内容类型,自动生成提示词,帮助将信息和知识分类到 PARA(项目、领域、资源、档案)的相应部分,还能帮设计笔记标签系统。此外,知识助手 Bot 可以根据学习进度和兴趣点,定期推送相关的文章、论文和资源,实现渐进式积累领域知识。 3. 在代码库相关的知识管理中,Cursor 有针对大代码库精准找到相关函数,并利用其信息帮助撰写代码的功能。对于非开发性质的问答,它是一个天然的 RAG 引擎。在问答窗口使用特定操作时,它会先在当前文件夹下搜索并显示相关文档和相关度,最后用这些信息构建提示词完成生成。而且,它能与私有文档自然结合进行问答,并将新生成的见解沉淀成新文档,形成知识闭环,提高知识检索和管理的效率。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
用AIGC生成的单镜头循环视频案例
以下是一些用 AIGC 生成的单镜头循环视频的案例: OpenAI 的 Sora 视频生成模型:能够生成长达 1 分钟的视频,在时长、稳定性、一致性和运动幅度上表现出色。它可以根据提供的图像和提示生成视频,还能在时间上向前或向后扩展视频以产生无缝的无限循环。此外,能零镜头地改变输入视频的风格和环境,在两个输入视频之间逐渐进行插值创建无缝过渡,也能够生成图像。 Luma 视频生成工具 Dream machine 增加了尾帧生成视频的功能和循环视频生成功能。 智谱 AI 发布的 DiT 视频生成模型“智谱清影”,支持文生和图生视频,目前免费使用,加速生成需要付费。 此外,还有一些其他相关项目: Google 的 Genie 采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 DeepMind 的 WaveNet 是一种生成模型,可以生成非常逼真的人类语音。 OpenAI 的 MuseNet 是一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 ElevenLabs 的 Multilingual v2 是一种语音生成模型,支持 28 种语言的语音合成服务。 Stability 发布了 Stable Video 4D 模型,可以从视频中生成更多角度的新视频。 Pixverse 更新了 V2 版本 DiT 视频模型,支持 8 秒时长视频生成、细节和动作增强、支持最多 5 段内容一次性生成,无缝衔接。
2025-04-10
推荐知识库中用ai做学术的案例
以下是知识库中与用 AI 做学术相关的案例和信息: B 站 up 主的课程:每节 15 分钟,免费且内容好,涵盖 AI 艺术字等。 炼丹操作:16 号晚上中老师会带大家动手炼丹,炼丹需提前准备一些图,会让老师提前发布内容让大家准备。 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 经典必读文章:如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。 6 月 29 日更新:翻译完 a16z 推荐的 AI 典藏文章其中两篇:。
2025-04-01
有AI+游戏的最新案例吗
以下是一些 AI+游戏的最新案例: 由 5 人独立游戏工作室 Proxima 开发的 AI 冒险独立游戏 Suck Up!上线三周油管播放超千万。这是一款沙盒社交冒险游戏,团队尝试加入了名为 Nemo 的 AI NPC,基于 LLM 驱动,Nemo 能在接收到用户命令或其他线索后,调动感知、记忆,并转化为可执行的游戏行动。去年上半年,该工作室因获得 160 万美元投资引起轰动,上线后也受到资本关注。玩家对其玩法和模式提出了很多创意想法,如设计成就系统、上线多人模式等。 开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。像 MusicLM 等模型已经支持生成多音轨的作品。 2023 年 Genfun.ai 和 Meshy 联合制作的游戏《Soul Chronicle》,是首款实时 3D+AIGC+UGC 的 MMO 手游,最大突破是制作出了与游戏完美融合的 3D AIGC 技术,可在游戏中实时生成角色皮肤。 2024 年 Bitmagic 释出的《Roleverse》平台,可在平台内使用提示在游戏内定制角色,对角色进行缩放、挤压和拉伸,也能轻松对游戏世界进行编辑。 AI 技术在游戏行业的应用由来已久,且不断发展。从最初的简单内容和随机元素生成,到辅助游戏设计,再到如今能够生成更复杂的游戏内容,如动态场景、智能 NPC 行为等。AI 对游戏创作的影响包括美术与风格、剧情与叙事、关卡与玩法、音效与音乐、测试与优化等方面。同时,AI 能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,游戏还能成为 AI 模型能力的最佳试验场。
2025-04-01