直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

comfyui 官网

回答

ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。

其优势包括:

  1. 对显存要求相对较低,启动速度快,出图速度快。
  2. 具有更高的生成自由度。
  3. 可以和 webui 共享环境和模型。
  4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。
  5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。

劣势在于:

  1. 操作门槛高,需要有清晰的逻辑。
  2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。

ComfyUI 的官方链接为:https://github.com/comfyanonymous/ComfyUI 。

关于 ComfyUI 的学习资料,有以下几个网站提供相关教程:

  1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网站为:https://www.comfyuidoc.com/zh/ 。
  2. 优设网:提供了详细的入门教程,适合初学者。教程地址是:https://www.uisdc.com/comfyui-3 。
  3. 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 。
  4. Bilibili:提供了一系列从新手入门到精通的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。

此外,在知乎的“深入浅出完整解析 Stable Diffusion(SD)核心基础知识”中,也有关于零基础使用 ComfyUI 搭建 Stable Diffusion 推理流的内容。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:ComfyUI 是什么?

ComfyUI是一个基于节点流程式的stable diffusion AI绘图工具WebUI,你可以把它想象成集成了stable diffusion功能的substance designer,通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。[heading2]优劣势[content]优势:1.对显存要求相对较低,启动速度快,出图速度快;2.具有更高的生成自由度;3.可以和webui共享环境和模型;4.可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;5.生成的图片拖进后会还原整个工作流程,模型也会选择好。劣势:1.操作门槛高,需要有清晰的逻辑;2.生态没有webui多(常用的都有),也有一些针对Comfyui开发的有趣插件。[heading2]官方链接[content]从github上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI[heading2]截图示例[heading2]延伸阅读:[content]内容由AI大模型生成,请仔细甄别。

问: 有没有comfy ui相关的学习资料?

是的,根据搜索结果,有几个网站提供了关于ComfyUI的学习教程:1.ComfyUI官方文档:提供了ComfyUI的使用手册和安装指南,适合初学者和有经验的用户。你可以在[ComfyUI官方文档网站](https://www.comfyuidoc.com/zh/)找到相关信息。2.优设网:提供了一篇详细的ComfyUI入门教程,这篇教程适合初学者,详细介绍了ComfyUI的特点、安装方法以及如何使用ComfyUI生成图像等内容。教程地址是[优设网的ComfyUI入门教程](https://www.uisdc.com/comfyui-3)。3.知乎:有用户分享了ComfyUI的部署教程和使用说明,这篇介绍适合那些已经有一定基础并希望进一步了解ComfyUI的用户。可以在[知乎的ComfyUI介绍](https://zhuanlan.zhihu.com/p/662041596)找到相关教程。4.Bilibili:提供了一系列的ComfyUI视频教程,涵盖了从新手入门到精通的各个阶段。这些视频教程可以帮助用户更直观地学习ComfyUI的使用。可以在[Bilibili的ComfyUI系列教程](https://www.bilibili.com/video/BV14r4y1d7r8/)找到视频教程。这些资源为用户提供了丰富的学习材料,从基础操作到高级技巧,可以帮助用户更好地掌握ComfyUI的使用。内容由AI大模型生成,请仔细甄别。

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

[ComfyUI](https://link.zhihu.com/?target=https%3A//github.com/comfyanonymous/ComfyUI)是一个基于节点式的Stable Diffusion AI绘画工具。和Stable Diffusion WebUI相比,ComfyUI通过将Stable Diffusion模型生成推理的pipeline拆分成独立的节点,实现了更加精准的工作流定制和清晰的可复现性。目前ComfyUI能够非常成熟的使用Stable Diffusion模型,下面是Rocky使用ComfyUI来加载Stable Diffusion模型并生成图片的完整Pipeline:使用ComfyUI来加载Stable Diffusion模型大家可以看到上图是文生图的工作流,另外大家只需关注Rocky的公众号WeThinkIn,并回复“ComfyUI”,就能获取文生图,图生图,图像Inpainting,ControlNet以及图像超分在内的所有Stable Diffusion经典工作流json文件,大家只需在ComfyUI界面右侧点击Load按钮选择对应的json文件,即可加载对应的工作流,开始愉快的AI绘画之旅。话说回来,下面Rocky将带着大家一步一步使用ComfyUI搭建Stable Diffusion推理流程,从而实现上图所示的生成过程。首先,我们需要安装ComfyUI框架,这一步非常简单,在命令行输入如下代码即可:安装好后,我们可以看到本地的ComfyUI文件夹。ComfyUI框架安装到本地后,我们需要安装其依赖库,我们只需以下操作:

其他人在问
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
为什么我搜不到deepseek的官网网页版入口
DeepSeek 是一家具有独特特点的中国公司开发的人工智能模型。它有点像 2022 年之前的 OpenAI 和 DeepMind,更倾向于学术研究,目前没有太多商业化的运营手段。 您搜不到 DeepSeek 官网网页版入口可能有多种原因。您可以按照以下步骤尝试访问: 1. 搜索 www.deepseek.com,点击“开始对话”。 DeepSeek 有一些独特的优势,比如: 1. 具有强大的推理能力,比肩 O1。 2. 参数少,训练开销与使用费用小。 3. 开源,任何人均可自行下载与部署,并提供了详细的训练步骤与窍门,甚至有可以运行在手机上的 mini 模型。 4. 官方目前提供的服务完全免费,任何人随时随地可用。 5. 是暂时唯一支持联网搜索的推理模型。 如果这都不值得欢呼,还有什么值得欢呼?您可以按照以下建议使用 DeepSeek: 1. 请直接访问网页链接马上用起来,也有移动 APP。 2. 使劲用,疯狂用,尝试用它基本取代传统搜索。 3. 去看看别人是怎么用的,去试试其他大模型,了解 AI 擅长什么,不擅长什么,如何调教,然后继续解锁与迭代属于自己的用法与更多工具。 希望 DeepSeek R1 会让您对当前最先进的 AI 祛魅,让 AI 逐渐变成您生活中的水和电。
2025-03-26
为什么我搜不到deepseek网页版官网
DeepSeek 网页版官网为 www.deepseek.com 。使用 DeepSeek 联网版的核心路径如下: 1. 拥有扣子专业版账号,如果是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型,访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 。打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体,点击创建,先完成一个智能体的创建。 如果官网的搜索不能用,一直崩溃,可以用火山的满血版,在相关视频的最后 10 分钟左右有手把手教程。此外,还有以下关于 DeepSeek 的信息: 1. 关于 DeepSeek 的效果对比,用 Coze 做了个小测试,大家可以对比看看。 2. 如何使用 DeepSeek:Step1:搜索 www.deepseek.com,点击“开始对话”;Step2:将装有提示词的代码发给 Deepseek;Step3:认真阅读开场白之后,正式开始对话。 3. DeepSeek 的设计思路:将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担;通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能;在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性;照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改;用 XML 来进行更为规范的设定,而不是用 Lisp(对作者来说有难度)和 Markdown(运行下来似乎不是很稳定)。 4. DeepSeek 论文解读,有直播视频回放和相关论文下载,如 。 5. 关于万能提示词,这是用 DS 小技巧,用这个提示词来 DeepSeek R1,基本可以算万能了。您是一名顶尖的提示词优化专家,请按以下步骤优化下方提示:分析原提示的模糊性、冗余项和潜在歧义;基于,重构提示结构(可参考 CRISPE/BROKE 框架);生成 3 个优化版本,并解释每版的改进逻辑。 特别鸣谢李继刚的【思考的七把武器】在前期为作者提供了很多思考方向,Thinking Claude 也是作者设计 HiDeepSeek 的灵感来源,Claude 3.5 Sonnet 是最得力的助手。
2025-03-26
deepseek官网地址
DeepSeek 的相关网址如下: 官网使用地址:https://chat.deepseek.com/(有手机客户端:扫描下面二维码) 模型下载地址:https://github.com/deepseekai/DeepSeekLLM?tab=readmeovfile API 文档地址: 集合·DeepSeek 提示词方法论:https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf 魔改版本:https://huggingface.co/ValueFX9507/TifaDeepsex14bCoTGGUFQ4 、https://huggingface.co/mradermacher/DeepSeekR1DistillQwen7BabliteratedGGUF 早期 DeepSeek 官网:https://www.deepseek.com/ ,进入右上角的 API 开放平台。
2025-03-24
AI生成小说的官网有哪些
以下是一些 AI 生成小说的官网: ainovel.com promptbase.com 此外,novelai.net 也是一个与小说生成相关的网站。
2025-03-22
告诉我chatGPT的官网
ChatGPT 的官网是:https://chat.openai.com/ 。ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。目前 ChatGPT 官网有两个版本,一个是 GPT3.5,一个是 GPT4。GPT3.5 是免费版本,只要拥有 GPT 账号就能使用,而 GPT4 若要使用更多功能则需要升级到 PLUS 套餐,收费标准是 20 美金一个月。
2025-02-28
我想用chatGPT帮我生成图片,告诉我他的官网
ChatGPT 本身不能直接生成图片。但 OpenAI 旗下的 DALL·E 3 可以生成图片。您可以通过以下方式获取相关信息: 打开 ChatGPT 就能使用 DALL·E 3 生成图片,OpenAI 还罕见地发布了一些技术细节。论文地址:https://cdn.openai.com/papers/dalle3.pdf 。 关于 DALL·E 3 的更多介绍:DALL·E 3 是 OpenAI 在 2023 年 9 月份发布的文生图模型,与 DALL·E 2 相比,它可以利用 ChatGPT 生成提示,生成的图质量也更高。例如对于同样的 prompt“一幅描绘篮球运动员扣篮的油画,并伴以爆炸的星云”,DALL·E 3 在细节、清晰度、明亮度等方面优于 DALL·E 2 。
2025-02-28