Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么搭建coze工作流

Answer

搭建 Coze 工作流的步骤如下:

  1. 进入 Coze,点击「个人空间 - 工作流 - 创建工作流」,打开创建工作流的弹窗。
  2. 根据弹窗要求,自定义工作流信息,点击确认后完成工作流的新建。
  3. 在编辑面板中拖入对应的节点,包括:
    • 插件:提供一系列能力工具,拓展 Agent 的能力边界。
    • 大模型:调用 LLM,实现各项文本内容的生成。
    • 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。
    • 开始节点、结束节点:分别对应子任务流程图中的原文输入和结果输出环节。
  4. 按照流程图和具体需求,拖入相应的节点完成工作流框架的搭建。

例如:

  • 在创建工作流时,配置工作流基础信息,拖入“HTTP 请求”节点,并根据接口文档设置请求方式、接口地址和请求参数。
  • 对于返回的 JSON 数据,可通过“代码节点”进行数据格式转换。
  • 若要将新闻数据放入飞书多维表格,需在飞书中新建多维表格并创建相关字段,然后在 Coze 工作流中拖入“飞书多维表格”节点进行链接和设置。

另外,在搭建如分析儿童绘画作品心理状态的公益应用时,先新增工作流并命名,根据具体业务逻辑编排流程图,如上传作品 - 多个多模态大模型识别不同元素 - 分别提取特征并分析 - 综合分析结果 - 给出评估与建议,然后从左到右分组拆解多模态大模型的作用,搭建完工作流后可进行“用户界面”的搭建,选择“桌面网页”类型。相关的 prompt(提示词)文档地址:https://vcn5grhrq8y0.feishu.cn/wiki/Z3NzwrtEKi9h5mk0rTOcAT0xnTc

Content generated by AI large model, please carefully verify (powered by aily)

References

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

首先进入Coze,点击「个人空间-工作流-创建工作流」,打开创建工作流的弹窗。根据弹窗要求,自定义工作流信息。点击确认后完成工作流的新建,可以看到整个编辑视图与功能如下:其中,左侧「选择节点」模块中,根据我们的子任务需要,实际用上的有:1.插件:提供一系列能力工具,拓展Agent的能力边界。本案例涉及的思维导图、英文音频,因为无法通过LLM生成,就需要依赖插件来实现。2.大模型:调用LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。3.代码:支持编写简单的Python、JS脚本,对数据进行处理。而编辑面板中的开始节点、结束节点,则分别对应1.2分解子任务流程图中的原文输入和结果输出环节。接下来,按照流程图,在编辑面板中拖入对应的LLM大模型、插件、代码节点,即可完成工作流框架的搭建。

3分钟搞定热点新闻+文案创作!飞书多维表格+Coze神操作,小白也能秒上手!

开始创建工作流配置工作流基础信息在工作流中拖入“HTTP请求”节点,这可是连接聚合数据API的关键!根据接口文档,请求方式选择“GET”,接口地址填入http://v.juhe.cn/toutiao/index。重点来了!请求参数设置!key:你的API密钥!去聚合数据“我的API”页面找,需要实名认证才能获取哦!(放心,免费的!)type:新闻类型,比如keji(科技)、yule(娱乐)等等,这里我们先用keji(科技)。page_size:一次抓取多少条新闻?设置10条够用。HTTP请求返回的是JSON数据,飞书多维表格需要数组格式。怎么办?“代码节点”闪亮登场!复制粘贴以下代码,一键搞定数据格式转换!(看不懂代码?没关系!直接用就行!😎)完整代码:最后一步!把新闻数据放进飞书多维表格!在飞书中新建多维表格,务必创建“标题”和“分类”两个文本字段(重要!和代码节点对应)。创建完成后,复制多维表格链接。回到Coze工作流,拖入“飞书多维表格”节点,粘贴刚才复制的多维表格链接,“Records”选择“代码节点”的“对象数组输出”。最后的输出节点可以把输出变量都删除了,因为我们的输出放到飞书多维表格了不需要在扣子上做多余输出

我们用扣子Coze搭建了个 AI 公益应用(详细技术拆解教程)

今天我们站在技术实现的角度来给大家分享下这个项目的实现过程,一共分为两个部分:用户界面业务逻辑首页进入扣子(coze.cn)选中「创建应用」选中「创建空白应用」然后输入「应用名称」进入项目搭建页面。进入项目搭建页面我们首先是需要先搭建「业务逻辑」部分[heading3]业务逻辑[content]先新增一个工作流,工作流名称叫做psy_ai这个项目主要的业务逻辑是通过上传儿童的绘画作品分析心理状态,在《PsyDraw:A Multi-Agent Multimodal System for Mental Health Screening in Left-Behind Children》论文中提到为了提高分析结果的准确性,需要把这个分析过程分为多个步骤来实现。工作流的编排流程图:上传作品->多个多模态大模型识别不同元素->分别提取特种并分析->综合分析结果->给出评估与建议所以最后得出了以下工作流结构:接下来从左到右分为三组大模型给大家一一拆解:第一组多模态大模型主要作用是分析图片元素:整体特征、房屋特征、树木特征、人物特征第二组通用大模型主要是对提取到的信息进行对应内容的总结分析第三组通用大模型先汇总结果,然后再分别提取不同(诊断评估与建议)的结果。以上所有大模型节点对应的prompt(提示词):文档地址:https://vcn5grhrq8y0.feishu.cn/wiki/Z3NzwrtEKi9h5mk0rTOcAT0xnTc当搭建完工作流后就开始进行「用户界面」的搭建,选择「桌面网页」类型。

Others are asking
coze AI 应用中图片触发工作流如何设置
在 Coze AI 应用中设置图片触发工作流,步骤如下: 1. 工作流入参设置:将工作流的入参设置为 File>Image。注意,图片下方会提供特别的文本供复制,代码内容中 ImageUpload1 部分可替换成实际的文件上传组件名称,且一个引号、一个大括号都不能错。因为 value 里未提供 url 地址,只能用上传后的 file_id 从 Coze 存储的图片中获得索引。 2. 获得图片 URL:在工作流中可以直接使用 image 变量,也可以用 string 模式输出,它会神奇地变成图片的 URL。当使用文本组件显示其地址时,能清晰看到图片地址,图片组件上也可正常显示图片。只要绑定工作流的 image 输出即可。 此外,还有以下相关内容供您参考: 用扣子 Coze 搭建的 AI 公益应用中,用户界面的功能页相对复杂。当用户上传完图片进入分析,分析后会显示具体分析结果。布局组件包括容器(Div)、Markdown、图片(Image)、按钮(Button)、图片上传(ImageUpload)等,组合方式也有详细配置。 在 Coze 中,图像流的入口可通过扣子 coze.cn 的个人空间页面,图像流菜单进入。创建全新的图像流可在右上角点击操作,输入名称和描述。图像流由多个工具节点组合而成,包括开始节点、结束节点和智能生成、智能编辑、基础编辑等工具节点类别。
2025-03-29
Coze上有哪些高赞的智能体?
以下是 Coze 上的一些高赞智能体及相关内容: 此外,以下是一些常见的 Agent 构建平台: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富插件工具,能拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 Coze 是字节跳动推出的强大的 AI 聊天机器人构建平台,具有多种功能,如智能体、插件、知识库、工作流、图像流和记忆模块。智能体是其核心功能之一,基于大型语言模型构建,具有多种智能行为特征,能完成多种复杂任务,分为单智能体和多智能体模式。单智能体解决复杂问题需长记忆能力,多智能体扩展能力好,能共同解决复杂问题。
2025-03-29
coze工作流
Coze 的工作流具有以下特点和步骤: 特点: 是一种可视化的方式,允许用户组合各种功能模块,如插件、大语言模型、代码块等,实现复杂和稳定的业务流程编排。 由多个节点组成,包括 Start 节点和 End 节点,用户可在节点间添加各种功能模块构建业务流程。 支持丰富的功能模块,可根据需求灵活组合,如调用大语言模型进行文本生成、调用插件进行数据处理等。 工作流的创建和编辑通过可视化拖拽界面完成,无需编写代码,降低了搭建门槛。 创建好的工作流可直接集成到 Coze 的聊天机器人中使用,实现复杂业务逻辑。 为用户提供了可视化、低代码的方式,快速搭建满足业务需求的 AI 应用和服务,降低开发门槛,提升工作效率。 步骤: 梳理清楚工作流,例如对于复刻吴恩达开源的 AI 翻译项目,先新建工作流,逐步导入核心流程。 工作流分为若干节点,每个节点完成特定任务,如初始翻译、反思优化、结果输出等。 对每个节点进行配置,如开始节点选择翻译的源语言和目标语言及其他参数;初步翻译大模型节点选择大模型和参考相关提示词等。
2025-03-28
COZE智能体全自动制造视频发布媒体
以下是关于 COZE 智能体全自动制造视频发布媒体的相关内容: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,还提供了相关教程。 先看效果: 可查看 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 工作流调试完成后,加入到智能体中,可选择工作流绑定卡片数据。 选择发布渠道为飞书多维表格,填写上架信息等待审核,审核通过后即可使用。 3. 在多维表格中使用字段捷径,引用该智能体。 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,自动调用工作流生成视频。 进行表单分享,实现填写表单自动创建文案短视频的效果。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 创建智能体: 1. 知识库 本次创建知识库使用手动清洗数据。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-03-28
coze开发硬件接入ai
如果您想开发硬件接入 Coze 智能体,以下是一些相关信息: 在服务器设置方面,对于 chatgptonwechat(简称 CoW)项目,可点击“Docker”中的“编排模板”中的“添加”按钮。备注说明版可借用“程序员安仔”封装的代码。将编译好的内容复制进来,在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”,若无法正常启动,可查看文档后面的“常见问题”。 关于计划,包括弄共学、做网页连接 Coze 等,涉及网页、小程序、App、桌面应用、浏览器插件等方面,还提到了硬件相关的工作安排。 在入门 Coze 工作流方面,首先要明确任务目标与执行形式,包括详细描述期望获得的输出内容(如文本、图像、音频等形式的数据,以及具体格式和结构、质量标准),预估任务的可行性,确定任务的执行形式。例如对于一篇文章,可参照特定框架进行微调,评估任务可行性,结合使用习惯确定预期的执行形式。
2025-03-27
coze的输入中如何引用变量
在 Coze 的输入中引用变量的方式如下: 在大模型节点的提示词中,支持使用{{variable}}引用输入参数。变量用{{}}来包裹,这里的变量就是前面输入的内容,如果变量名正确,会显示成蓝色。 在文本处理节点中,有两种工作模式。字符串拼接模式下,可以用{{变量名}},{{变量名.子变量名}},{{变量名}}的方式引用变量。如果直接引用一个数组类型的变量,默认会用逗号把数组中的内容连接起来,也可以指定只要数组中的某一项。字符串分隔模式下,用特定的分隔符(比如"||"、"////"或"")把一段文字拆分成多个小段。 在阅读导图的插件节点配置中,确定输入时,在输入区,该插件仅需设置{{query_text}}变量,格式是 string 字符串。只需要引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。
2025-03-26
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
最适合搭建本地个人知识库的ai是什么
以下是一些适合搭建本地个人知识库的 AI 相关技术和工具: 1. RAG(Retrieval Augmented Generation)技术:利用大模型的能力搭建知识库,其应用包括文档加载(从多种来源加载文档)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)和输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Open WebUI:一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,是构建知识库的基础之一)。如果要求不高,通过其可实现本地大模型的对话功能。 3. AnythingLLM:包含 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。安装完成后,配置主要分为三步,包括选择大模型、文本嵌入模型和向量数据库。在 AnythingLLM 中,有 Workspace 的概念,可创建工作空间,上传文档并进行文本嵌入,还提供了 Chat 模式(综合给出答案)和 Query 模式(仅依靠文档数据给出答案)两种对话模式。
2025-03-28
搭建私有大模型
搭建私有大模型可以参考以下几种方法: 1. 方法一 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时会告知如何白嫖大模型接口。 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建完此系统即可,它也有问答界面。 搭建,其中的cow插件能进行文件总结、MJ绘画。 2. 方法二 部署大语言模型: 下载并安装Ollama,根据电脑系统,从https://ollama.com/download 下载。下载完成后,双击打开,点击“Install”。安装完成后,将下方地址复制进浏览器中,若出现相关字样,表示安装完成:http://127.0.0.1:11434/ 。 下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,设备充足可下载更大模型)。若为windows电脑,点击win+R,输入cmd,点击回车;若为Mac电脑,按下Command(⌘)+Space键打开Spotlight搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 3. 方法三 企业大模型四步走的第一步是私有化部署通用大模型,一是解决AI科普问题,二是满足一些通用需求。若有能力,可赠送免费的私有化部署通用大模型,其为千亿模型的缩小版、浓缩版,能解决科普问题,让企业员工熟悉大模型,同时满足办公等通用需求。此外,还提供了360AI办公的一套会员服务,围绕办公营销需求做了很多工具,以订阅模式耗费算力,每天几乎一块钱。
2025-03-26
你这个知识库和检索是用什么搭建的?
我们的知识库和检索主要基于以下原理和流程搭建: 1. 文本预处理:包括去除无关字符、标准化文本(如将所有字符转换为小写)、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本(词或短语)转换为向量。通常通过使用预训练的嵌入模型,如 Word2Vec、GloVe、BERT 等,将每个词或短语映射到高维空间中的一个点(即向量)。 3. 特征提取:对于整个问题句子,可能应用进一步的特征提取技术,比如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示,以捕捉句子的上下文信息。 4. 向量优化:在某些情况下,问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统的其他部分协同工作。 在知识库检索阶段: 1. 首先需要有一个知识库。在大模型的检索中,并非依靠传统的关键字搜索,而是依靠问题在空间中的向量位置,去寻找距离这个向量最近的其他词句,然后完成检索。 2. 要在向量中进行检索,我们的知识库会被转化成一个巨大的向量库。具体流程包括文档向量化、文档加载(从多种不同来源加载文档)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)以及输出(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起生成更加合理的答案)。
2025-03-25
扣子工作流与用户界面搭建
以下是关于扣子工作流与用户界面搭建的相关内容: 一、工作流搭建 1. 进入扣子(coze.cn),选中「创建应用」,再选中「创建空白应用」,输入「应用名称」进入项目搭建页面。 2. 新增一个工作流,工作流名称叫做 psy_ai。 3. 该项目的业务逻辑是通过上传儿童的绘画作品分析心理状态,分析过程分为多个步骤实现,工作流的编排流程图为:上传作品>多个多模态大模型识别不同元素>分别提取特种并分析>综合分析结果>给出评估与建议。 4. 工作流从左到右分为三组大模型: 第一组多模态大模型主要作用是分析图片元素:整体特征、房屋特征、树木特征、人物特征。 第二组通用大模型主要是对提取到的信息进行对应内容的总结分析。 第三组通用大模型先汇总结果,然后再分别提取不同(诊断评估与建议)的结果。 5. 所有大模型节点对应的 prompt(提示词):文档地址:https://vcn5grhrq8y0.feishu.cn/wiki/Z3NzwrtEKi9h5mk0rTOcAT0xnTc 二、用户界面搭建 1. 选择「桌面网页」类型。 2. 以《小喵星座日历》扣子网页应用为例: 板块 1:输入个人信息和生成图片,包含 2 个选项、1 个按钮、分割图、1 个输入框、1 个按钮。点击生成按钮会触发事件,调用日历生成工作流,生成中时生成按钮禁用,用 loading 按钮展示动态变化。 板块 2:生成星座日历图片,新建一个容器,包含一个文本组件、一个列表组件。 板块 3:查看星座生成记录,新建一个容器,包含一个按钮组件、一个列表组件,点击按钮调用读取生成历史的工作流,列表绑定生成历史工作流的输出结果。 板块 4:查看示例,新建一个容器,包含一个文本组件、4 个图片组件。 三、功能页相关配置 1. {{ImageUpload1.value}}用于获取图片上传组件的第一张图片。 2. {{psy_ai.error}}是工作流的报错信息。 3. 当用户上传图片点击按钮时会进入在家中的状态,右边内容显示容器里有两个组件: 图片组件显示加载中的 gif 图片(默认隐藏),图片来源本地上传加载中 gif 图,尺寸宽度为百分比 100%,高度适应内容,可见性根据{{!psy_ai.loading}}控制,工作流运行中显示。 Markdown 组件显示分析内容,隐藏根据{{psy_ai.loading}},工作流运行完显示。 至此,页面所有的布局和数据交互全部完成。
2025-03-25
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
点击AI应用主界面的某一个图片组件触发另一个工作流,如何设置入参
要在 AI 应用主界面设置点击某一图片组件触发另一个工作流的入参,具体步骤如下: 1. 工作流的入参设置为 File>Image。 2. 入参配置为 {{ImageUpload1.value}}是获取图片上传组件的第一张图片,因为组件可以上传多张图片,所以需要通过下标数来获取,数组的下标从 0 开始。 3. {{psy_ai.error}}是工作流的报错信息。 4. 当用户上传图片点击按钮时会进入加载状态,加载状态通过 {{psy_ai.loading}} 控制。提交按钮配置中,属性设置包括宽度百分比 95%、高度固定 50px、颜色填充 295DC1、圆角 12、加载状态 {{psy_ai.loading}}。事件配置为事件类型 点击时,执行动作 调用工作流,WorkFlow(工作流) psy_ai,失败提示 工作流调用失败,原因:{{psy_ai.error}}。 5. 当工作流运行时,右边的内容显示容器包含两个组件,图片组件显示加载中的 gif 图片(默认隐藏),其来源为本地上传加载中 gif 图,尺寸为宽度百分比 100%,高度适应内容,可见性隐藏根据 {{!psy_ai.loading}},即当 loading 为 true 时隐藏,前面加「!」取反,工作流运行中显示。Markdown 组件显示分析内容,内容显示是 psy_ai 工作流输出的结果,隐藏根据 {{psy_ai.loading}},psy_ai 工作流运行完显示。 至此,页面所有的布局和数据交互就全部完成了。
2025-03-29
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
ai工作
以下是关于 AI 工作的相关内容: 一、固定且优化的 AI 工作流 1. 起床后,让 AI“马云”“马化腾”为自己排 TODO 优先级,并进行私董会的脑暴。 2. 工作中有傲娇的 AI 小助理加油,其 Prompt 为要阳光、会撒娇/卖萌。 3. 重点事项 bot 方面,如内容创作,拆成一个 bot 团队组,工作分成选题、标题、框架、扩写,然后分 A/B 组两个 AIbot 互相改。其中要点是提供反常识、梗,学习喜欢的 UP 创作方法论,如导演小策、影视飓风 TIM 总结的 HKRR(快乐/知识/共鸣/节奏)。 4. 优化的 bot 包括内容选题 bot、短视频脚本 bot、数据分析 bot(GPT4)、网页 Perplexity 的资料库 bot。 5. 进一步优化:Zion、ChatO 和自动化 AIAgent 分身,基于自身知识库的 bot。 6. 将上述知识库、Prompt 资产全部放入飞书的知识库+多维表单中维护,等待飞书的 AI 进化。 7. 备选 50 多个生产力 AI 放在工具库里,待命输出。 8. 未来计划把整个公司业务全部搬入飞书中,外接 MJ、ChatBot 分身以及咨询日程预约。 9. 可能让所有流量口 bot 也介入飞书,给予飞书做数据分析和内容引擎(目前需手动)。 10. 提醒自己关注与 AI 打交道的人、利益、状态和情绪。 二、AI 无法替代的工作 借着 AI 浪潮,转型焦虑是一次明心见性、找寻个体独特价值的机会。应撇去浮躁与焦虑,关注如何用 AI 拓展个人主体性的边界。 三、AI 视频短片工作流 1. 概念设定:MJ 2. 剧本+分镜:ChatGPT 3. AI 出图:MJ、SD、D3 4. AI 视频:Runway、pika、PixVerse、Morph Studio 5. 对白+旁白:11labs、睿声 6. 音效+音乐:SUNO、UDIO、AUDIOGEN 7. 视频高清化:Topaz Video 8. 字幕+剪辑:CapCut、剪映 相关完整文档和直播回放可参考文中提供的链接。
2025-03-28