多智能体(Multi-Agent)是由多个自主、独立的智能体(Agent)组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。
随着大型语言模型(LLM)出现,以 LLM 为核心构建的 Agent 系统受广泛关注。单 Agent 核心在于 LLM 与工具协同配合,可能需与用户多轮交互;多 Agent 为不同 Agent 指定角色,通过协作完成复杂任务,与用户交互可能减少。
构建多 Agent 框架,需考虑增加的组件,包括:
此外,新兴的依靠协同的多智能体系统是复杂智能行为可来自大量简单智能系统相互作用的一种实现智能的方法。Manus 作为一款通用型 AI 代理工具,其技术架构主要基于多智能体(Multiple Agent)架构,运行在独立虚拟机中,通过规划、执行和验证三个子模块分工协作处理复杂任务,核心功能由多个独立模型完成,还包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件,采用“少结构,多智能体”设计哲学,实现高效处理复杂任务和高质量输出。
多智能体(Multi-Agent)是由多个自主、独立的智能体(Agent)组成的系统。在这个系统中,每个智能体都能够感知环境、进行决策并执行任务,同时它们之间可以进行信息共享、任务协调以及协同行动,以实现整体的目标。[heading2]关于Multi-Agent[content]随着大型语言模型(LLM)的出现,以LLM为核心构建的Agent系统近期受到了广泛关注。Agent系统旨在利用LLM的归纳推理能力,为不同的Agent分配角色和任务信息,并配备相应的工具插件,以完成复杂的任务。目前,更常见的框架主要集中在单Agent场景下。单Agent的核心在于LLM与工具的协同配合。LLM根据用户任务的理解,推理出需要调用的工具,并根据调用结果向用户提供反馈。在任务完成过程中,Agent可能需要与用户进行多轮交互。与此同时,越来越多的Agent框架开始关注多Agent场景。为了完成任务,多Agent会为不同的Agent指定不同的角色,并通过Agent之间的协作来完成复杂的任务。与单Agent相比,在任务完成过程中,与用户的交互可能会减少一些。[heading2]主要组成部分[content]为构建一个多Agent框架,我们需要思考相对于单Agent,框架中增加了哪些组件。环境(environment):所有Agent应该处于同一个环境中。环境中包含全局状态信息,Agent与环境之间存在信息的交互与更新。阶段(stage):为了完成复杂任务,现有多Agent框架通常采用SOP思想,将复杂任务分解为多个子任务。控制器(controller):控制器可以是LLM,也可以是预先定义好的规则。它主要负责环境在不同Agent和阶段之间的切换。记忆:在单Agent中,记忆只包括用户、LLM回应和工具调用结果等部分。而在多Agent框架中,由于Agent数量增多,导致消息数量增多。同时,每条消息可能需要记录发送方、接收方等字段。
如果我们希望让一台计算机表现得像人类一样,需要在计算机内模拟人类的思维方式。因此,我们需要理解是什么造就了人类的“智能”。我们必须理解自己的决策过程是如何进行的,才能够为机器编写智能程序。如果你稍微做一下自我觉察,就会发现有些过程是下意识发生的,例如我们可以不假思索地区分出猫和狗,而有些过程则需要推理。解决这个问题有两种可能的方法:|自上而下的方法(符号推理)|自下而上的方法(神经网络)||-|-||自上而下的方法模拟人类通过推理来解决问题的方式。它包括对人类知识的提炼,并用计算机可读的形式来表示,此外还需要开发一种在计算机内部模拟推理的方法。|自下而上的方法模拟人脑的结构,由大量称为神经元的简单单元组成。每个神经元的行为取决于输入数据的加权平均值,我们可以提供训练数据来训练神经元网络,从而解决有用的问题。|还有一些其他可能实现智能的方法:新兴的、依靠协同的多智能体系统(multi-agent),它基于这样一个事实,即复杂的智能行为可以来自大量简单智能系统的相互作用。根据进化控制论,在元系统跃迁的过程中,智能可以从更简单的反应行为中产生。进化方法或遗传算法(genetic algorithm),是一种基于进化原理的优化过程。[1]译者注:元系统跃迁,[Metasystem Transition](https://en.wikipedia.org/wiki/Metasystem_transition),是指通过演化涌现出更高层次的组织或者控制。我们将在课程的后续部分考虑这些方法,但现在我们将重点关注自上而下、自下而上两个主要方向。
Manus是一款由中国团队研发的全球首款通用型AI代理工具,于2025年3月5正式发布。它区别于传统聊天机器人(如ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的AI”。[heading1]Manus AI代理工具的具体技术架构是什么?[content]Manus AI代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。[heading2]Manus AI的技术架构还包括以下几个关键组件:[content]1.虚拟机:Manus AI运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。2.计算资源:Manus AI利用计算资源生成算法,用于筛选简历等具体任务。3.生成物:Manus AI能够生成各种类型的输出,如文本、表格、报告等。4.内置多个agents:Manus AI通过内置多个智能体,实现了任务的分解和协同工作。此外,Manus AI还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现AI的能力。这种设计使得Manus AI在处理复杂任务时更加高效和准确。Manus AI的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。