Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI发展时间线

Answer

AI 的发展有着较长的时间线,以下是其主要历程:

  • 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。
  • 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。
  • 1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科确立下来。
  • 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。

2024 年 AI 关键进展时间线:

  • 2 月,OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。
  • 3 月,Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。
  • 4 月,Meta 发布高性能开源大模型 Llama-3,降低了 AI 技术的准入门槛。
  • 5 月,GPT-4 发布。
  • 5 月,Ray-Ban 与 Meta 合作的智能眼镜销量突破百万。
  • 5 月,字节上线即梦 AI。
  • 6 月,快手发布可灵。
  • 6 月,Apple Intelligence 发布。
  • 9 月,OpenAI 发布 o1 预览版。
  • 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖;约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖;Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。
  • 12 月,OpenAI 发布 o3 系列模型。

AI 技术发展历程还包括:

  • 早期阶段(1950s - 1960s):专家系统、博弈论、机器学习初步理论。
  • 知识驱动时期(1970s - 1980s):专家系统、知识表示、自动推理。
  • 统计学习时期(1990s - 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。
  • 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等。

当前 AI 前沿技术点有:

  • 大模型(Large Language Models):GPT、PaLM 等。
  • 多模态 AI:视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
  • 自监督学习:自监督预训练、对比学习、掩码语言模型等。
  • 小样本学习:元学习、一次学习、提示学习等。
  • 可解释 AI:模型可解释性、因果推理、符号推理等。
  • 机器人学:强化学习、运动规划、人机交互等。
  • 量子 AI:量子机器学习、量子神经网络等。
  • AI 芯片和硬件加速。
Content generated by AI large model, please carefully verify (powered by aily)

References

码观 | 共识与非共识:从模型到应用,2024 AI 趋势回首与展望

三、应用形态的重构。AI Agent的突破让行业看到更多可能性——机器人获得自主行动能力的新方向,而AI编程工具的进展,也许预示着人机协作模式的变革。2024 AI关键进展时间线2月OpenAI发布视频生成模型Sora,首次实现高质量文本生成视频,开创AI视频生成新纪元3月Suno发布V3版本,AI音乐生成方向进入生产力可用状态(production ready)4月Meta发布高性能开源大模型Llama-3,降低了AI技术的准入门槛5月GPT-4发布Ray-Ban与Meta合作的智能眼镜销量突破百万字节上线即梦AI6月快手发布可灵Apple Intelligence发布9月OpenAI发布o1预览版10月Rosetta和AlphaFold算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖Anthropic大模型Claude 3.5 Sonnet获得“computer use”功能12月OpenAI发布o3系列模型

走入AI的世界

2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

Others are asking
能 自动生成原型图的国内AI工具有哪些
以下是一些能够自动生成原型图的国内 AI 工具: 1. 即时设计:https://js.design/ 这是一款可在线使用的“专业 UI 设计工具”,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面,它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 此外,目前还有一些基于人工智能生成内容的工具(AIGC)可以用于产品原型设计,例如: 1. UIzard:是一个利用 AI 技术生成用户界面的工具,它可以根据设计师提供的信息快速生成 UI 设计。 2. Figma:是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma 的社区也开发了一些 AI 插件,用于增强设计流程。 3. Sketch:是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用 AI 技术来辅助设计工作,例如自动生成设计元素等。 与思维导图相关的 AI 工具包括: 1. GitMind:一款免费的跨平台 AI 思维导图软件,可以通过 AI 自动生成思维导图。支持提问、回答、自动生成等多种模式。 2. ProcessOn:国内思维导图+AIGC 的工具,可以利用 AI 生成思维导图。 3. AmyMind:一个轻量级的在线 AI 思维导图工具,无需注册登录即可使用,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可以一键拓展思路,生成文章大纲。 5. TreeMind:一款“AI 人工智能”思维导图工具,可以输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供了一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助用户提升生产力。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-18
自动生成原型图的国内AI工具或网站有哪些
以下是一些国内可用于自动生成原型图的 AI 工具或网站: 1. 即时设计:https://js.design/ 这是一款可在线使用的“专业 UI 设计工具”,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 2. V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 3. Wix:https://wix.com/ Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 4. Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 此外,还有一些用于产品原型设计的 AIGC 工具,如: 1. UIzard:是一个利用 AI 技术生成用户界面的工具,它可以根据设计师提供的信息快速生成 UI 设计。 2. Figma:是一个基于云的设计工具,它提供了自动布局和组件库,可以帮助团队快速协作并迭代产品设计。Figma 的社区也开发了一些 AI 插件,用于增强设计流程。 3. Sketch:是另一款流行的矢量图形设计工具,它提供了插件系统,其中一些插件利用 AI 技术来辅助设计工作,例如自动生成设计元素等。 如果您想要使用 AI 绘制示意图,以下工具和平台可供选择: 1. Lucidchart:是一个强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。具有拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 2. Microsoft Visio:是专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net:http://diagrams.net/ 这是一个免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。官网:https://www.diagrams.net/
2025-03-18
国产的ai工具有哪些
以下是一些国产的 AI 工具: 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,重度用户年费可达几千元,轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁,用户友好度高,目前免费,每天签到获取灵感值即可,但在某些方面存在局限性。 思维导图类: GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路,生成文章大纲。 TreeMind:输入需求即可由 AI 自动完成思维导图生成。 EdrawMind:提供一系列 AI 工具,包括头脑风暴功能。 其他类: 传音智库:公司内部的 AI 平台,功能类似于 Poe,仅内网可访问,可用 kimi 替代。 Kimichat:https://kimi.moonshot.cn/ 秘塔 AI:https://metaso.cn/
2025-03-18
有哪些自动绘制流程图或原型图的AI工具
以下是一些可以自动绘制流程图或原型图的 AI 工具: 1. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-18
AI广告
以下是关于 AI 广告的相关信息: 分众传媒携手阿里通义大模型,开拓品牌广告 AI 营销新模式,具有以下业务价值: 品牌营销 AI 化:赋能品牌客户利用 AI 大模型技术进行品牌定位分析和策略制定,在存量博弈市场中找到差异化优势,高效利用线下流量建立品牌势能。 降低营销门槛:降低中小广告主投放门槛,通过一键生成广告语、一键 AI 设计等应用,帮助快速高效制作广告创意素材。 业务价值回报:众智 AI 大模型将为分众拓宽客户边界,提高服务能力,通过对供给侧的生产效率变革提高传媒行业新质生产力。 AI 小智助手:通过“AIchat”对话交互方式进行品牌洞察分析和营销策略制定,基于通义千亿大模型进行准确的语义理解和意图分类,并根据用户具体提问场景调用“众智 AI 大模型”回答问题并多轮交互。 AI 广告语:基于分众高质量广告语数据和方法论,模拟营销专家创作思路搭建的 Agent 生成应用,使用 Cot 思维链技术模拟人脑推理过程增强广告生成的准确性。 【已结束】AIPO:校园 AI 创投活动 10 月 8 日10 月 20 日,相关课程和回放信息如下: 10 月 16 日 20:00,视频,讲师 EM7 南柒,课程标题“AI 视频创作指南商业片制作”,课程回放链接:https://www.bilibili.com/video/BV1j2mTYrEsw/?spm_id_from=333.999.0.0 ,上课请提前准备商业片实战经验分享,相关资料:老师课件,作业提交链接:https://waytoagi.feishu.cn/share/base/form/shrcnRkQhbAQgtaRYZCtRSDrJmh 。 10 月 17 日 20:00,模型训练,讲师忠忠,课程回放链接:https://www.bilibili.com/video/BV1yCy7YkEyW/ 。 10 月 18 日 20:00,comfyUI+建站,讲师海辛/阿文,课程回放链接:https://www.bilibili.com/video/BV1yCy7YkEmX/ 。 10 月 20 日 14:0018:00,校园 AIPO,线下路演。 10 月 21 日 20:00,颁奖。 《引导式创作:AI 视觉艺术的多维工作流与创意实践分享》中包含案例展示与创作心得,其中案例一为 AI 广告视频,是帮朋友做的眉笔广告,使用 FLUX、即梦、PS、可灵等工具,未写脚本,靠对大牌美妆广告的印象直接生成图片和视频并加入自己创意;案例二为国风动画视频,参加成都熊猫文创比赛,基本用四套提示词制作,加入自己想法,从创意到成片约 4 天。
2025-03-18
我想用AI写论文,我应该怎么做
利用 AI 写论文可以参考以下步骤和建议: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 在论文写作领域,一些常用的 AI 工具和平台包括: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用 AI 来做事,特别是写东西方面: 1. 草拟初稿:可以让 AI 撰写博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等的初稿。 2. 优化写作:将文本粘贴到 AI 中,要求它改进内容,或就如何为特定受众提供更好的建议,还可以要求它以不同风格创建多个草稿,使其更生动或添加例子,以激发自己做得更好。 3. 协助完成任务:像使用实习生一样,让 AI 写邮件、创建销售模板、提供商业计划的下一步等。 4. 解锁自己:当在任务中遇到困难挑战而分心时,AI 能提供让自己保持动力的方式。
2025-03-18
如何创设一个作业时间计划管理智能体
以下是创设一个作业时间计划管理智能体的步骤: 1. 创建智能体:使用单 Agent 对话流模式。 编排对话流:点击创建新的对话流并与智能体关联。在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT。 数据处理:使用代码节点对两个插件获取的结果进行处理,注意代码节点输出的配置格式。 2. 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。回到智能体的编排页面进行同样的测试,确保对话流执行成功。 3. 发布: 选择多维表格,点击配置。 输出类型选文本,输入类型选择字段选择器。 完善上架信息,填写表格,选发布范围时可选择仅自己可用以加快审核。 提交上架信息,返回配置界面显示已完成,即可完成最终提交。 另外,在创建智能体时还需注意: 1. 像在“DeepSeek+扣子”的案例中,输入人设等信息,放上创建的工作流,但工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是个人 token 时,不能直接发布。可以将 api_token 作为工作流最开始的输入,用户自己购买后输入 api_token 再发布。 2. 如创建“画小二智能小助手”Coze 智能体,需打开扣子官网(https://www.coze.cn/),在 Coze 商店体验地址(https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cqnnu5qo7g00)点击创建 Bot,在对话框中工作空间选择“个人空间”并命名。同时设置提示词。
2025-03-17
AI发展大事记与 时间线
以下是 AI 发展的大事记与时间线: 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT。 2024 年 3 月,AI 发展持续升温,潞晨科技发布 OpenSora,Suno 发布 V3 版本爆火。 2024 年 4 月,英伟达发布硬件股价飙升。 2024 年 5 月,苹果发布 AI 芯片,张吕敏发布 IC light,AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金。 2024 年 7 月,快手开源 LivePortrait 模型,表情迁移。 2024 年 8 月,StabilityAI 老板成立新公司发布 flux 大模型。 2024 年 9 月,阿里云发布模型,海螺 AI 参战,Google 发布 GameGen 实时生成游戏,通义千问 2.5 系列全家桶开源,华为发布 cloud matrix 云计算基础设施,GPT 高级语音模式上线,Meta 发布 AI 眼镜 Orion,AI 代码编辑器 cursor 爆火。 2024 年 10 月,Pika 发布 1.5 模型,诺奖颁发给 AI 奠基人,特斯拉发布机器人,Adobe 发布 Illustrator+Al 生成矢量图,智谱 AI 发布 autoGLM,腾讯混元开源 3D 模型。 在更早的时间: 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。 1950 年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准。 1956 年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能 Artifical Intelligence 一词被正式提出,并做为一门学科被确立下来。 2024 年的其他进展: 2 月,OpenAI 发布视频生成模型 Sora,首次实现高质量文本生成视频,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成方向进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布,RayBan 与 Meta 合作的智能眼镜销量突破百万,字节上线即梦 AI。 6 月,快手发布可灵。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖,约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖,Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。
2025-03-17
文本生成视频最长时间的工具是什么
目前,能够进行文本生成视频且生成时间较长的工具包括以下几种: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装此最新插件,在图片基础上直接生成视频,这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费,其视频生成时长上限为 30 秒。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-16
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
AI时代下人才的发展
在 AI 时代,人才的发展具有以下重要方面: 跨学科思维与知识整合能力: AI 善于单领域的深度计算,但跨领域的综合创新仍是人类的优势。能够将不同学科的知识串联,进行类比、迁移和融合,是产生创新思路的源泉之一。未来复杂问题往往涉及多方面因素,仅靠单一领域视角难以解决。人类大脑在跨域联想方面远胜机器,能把看似无关的点联系起来,这正是创造力的体现。 要培养跨学科思维,首先要建立广博的知识面,对主要学科门类有基本了解。其次要刻意练习融会贯通,面对问题时尝试多学科视角。学校和培训应鼓励跨学科项目、通识教育。可以采取“T 字型”发展,一方面在主攻领域深耕,另一方面广泛涉猎相关领域。培养该能力还需提高系统思考和抽象概括能力。长远看,这种跨界整合能力将非常抢手,因为创造性突破往往发生在学科交叉处。 适应 AI 时代的关键技能: 技术专业人士需要发展 AI 难以替代的技能,包括团队建设、跨文化交流、创新解决方案的设计等。AI 虽然可以输出代码,但无法建立团队、跨越文化界限交流或激发团队创造力。对于从事可能被 AI 取代风险工作的技术工作者,需要重新思考职业生涯规划,可能意味着学习新技能或转向更需要人类特质的工作领域。 总的来说,生成式人工智能正在重塑技术就业市场的未来,既带来挑战也提供机遇。关键在于理解并适应这一变化,发展 AI 无法替代的技能,并在新的技术生态中找到自己的位置。同时要注重人类的创造力和创新能力。
2025-03-18
AI如何助力职业发展
AI 可以从以下几个方面助力职业发展: 1. 职业规划: 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和目标,推荐适合的职业路径和职位,提供个性化建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 2. 成为“超级个体”: 效率提升与技能拓展:个人借助 AI 工具学会新技能,参与跨职能工作,成为“全能型人才”。 专注深耕专业技能:AI 接管浅层、重复工作,让人有更多时间修炼深层次专业技能。 提高绩效与解锁可能性:掌握 AI 辅助技能,不仅提高当下绩效,还为自己创造更多发展机会。 放大个人价值:在效率革命推动下,个人利用 AI 成倍放大时间和精力价值,如个人创业者完成全链条工作,教师扩大授课规模,科研人员产出更多数据等。 3. 技术应用与转型: 企业运营:将 AI 前沿技术应用于企业运营,帮助企业完成数字化转型,优化运营效率。 个人成长:协助个人利用 AI 重构知识体系,实现个人成长,在 AI 时代轻松前行。
2025-03-18
请介绍一下中国AI发展历史
中国 AI 的发展历史可以追溯到二十世纪中叶。 最初,AI 领域的符号推理较为流行,也取得了一些重要进展,如专家系统。但由于从专家提取知识并以计算机可读形式表现和保持知识库准确性的任务复杂且成本高,20 世纪 70 年代出现了“人工智能寒冬”。 对于大众来说,对 AI 领域的使用在近 20 年随着国内互联网的发展才开始普及。最初的应用主要是基于 NLP 技术的聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中的应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但此前这些技术突破大多限于特定领域,模型应用范围相对狭窄。 近年来,随着计算资源变得更便宜、可用数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。在过去十年中,“人工智能”一词常被用作“神经网络”的同义词。 2022 年 11 月 30 日,OpenAI 发布基于 GPT 3.5 的 ChatGPT ,引发全球 AI 浪潮。AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续神经网络奠定基础。1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。
2025-03-18
ai的发展问题
AI 的发展是一个多方面且不断演进的过程。 从历史角度来看,图灵作为计算机科学和人工智能之父,提出了“图灵测试”来判断机器是否具有智能。如今,像 ChatGPT 这样的产品在与人类交流方面已经取得了令人震惊的进展,虽然学术界对其是否通过图灵测试仍存在争议,但也引发了关于新的判定标准如自主意识的思考。 在未来的发展预测方面,2024 年内,预计会在图片超短视频的精细操控、AI 音频、“全真 AI 颜值网红”、游戏 AI NPC、AI 男/女朋友聊天、实时生成内容、AI Agent、AI 的商业模式、可穿戴全天候 AI 硬件等方面有明确进展。同时,也面临着 AI 造成的 DeepFake、诈骗、网络攻击等问题,以及 AI 立法、伦理讨论落后于技术进展的情况。 到 2025 2027 年,AI 3D 技术、全真 AI 虚拟人、AR/VR 技术有望成熟,人与 AI 配合的工作方式将成为常态,同时也会带来如结构性失业等社会问题。 红杉资本的 Sonya Huang 认为,当前人工智能在各个行业的影响不断扩大,AI 产品越来越契合市场需要,生成式人工智能快速增长,但也存在如“AI 的$200B 问题”等挑战。她预测 2024 年将是真正的 AI 应用从“副驾驶”转变为“代理”的一年,未来人工智能将更有能力完成更高层次的认知任务,计算平衡将从预训练转向推理。但目前人工智能公司的融资环境不均衡,关键挑战在于提高用户保留率和缩小期望与现实之间的差距,产品与市场的契合度也需要进一步提升。
2025-03-17
AI的发展历史
AI 的发展历史如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论等。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 AI 的起源最早可追溯到 1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院召开的会议上,人工智能一词被正式提出,并作为一门学科被确立下来。此后近 70 年,AI 的发展起起落落。 最初,符号推理流行,带来了专家系统等重要进展,但因方法局限,20 世纪 70 年代出现“人工智能寒冬”。随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”一词常被用作“神经网络”的同义词。
2025-03-17