Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么搭智能体

Answer

搭建智能体的方法如下:

  • 输入人设等信息创建智能体,并放上相关工作流。配置完成后可进行测试,但千万不要直接发布。若工作流中存在使用个人 token 的插件,可将 token 作为工作流的输入,让用户购买后自行输入 token 再发布。
  • 按照市场营销逻辑组织智能体结构,确定以品牌卖点提炼六步法为核心的流程,将品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等分析助手加入工作流,同时还可包括用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等工具。
  • 智能体的主要功能和设计思路方面,如新年 flag 不倒翁智能体,具有目标拆解、提供周任务 LIST、形成 FLAG 社区等功能。其设计思路包括通过意图识别区分用户需求,调用不同模块,如目标管理模块、任务生成模块、内置互动模块等。
Content generated by AI large model, please carefully verify (powered by aily)

References

五津: DeepSeek+扣子:1分钟生成小红书爆款单词视频

创建一个智能体,输入人设等信息,放上刚才创建的2个工作流。配置完成后,就可以测试了~[heading1]千万不要直接发布!!![content]工作流2中【所有视频片段拼接】节点使用的插件api_token填的是你的token,其他人调用这个工作流会直接消耗你的money,所以不能直接发布。你可以将api_token作为工作流2最开始的输入,用户自己购买后,输入api_token就可以使用,然后再发布。看到这里,说明你离做出来就差一步行动了,期待看到你的成果!我是五津:C端新闻、视频产品经理,2025 AI春晚节目统筹&共创者,我的微信是:wdwxhs0100,欢迎来聊~我的公众号是【宝藏智能体club】

智能体在品牌卖点提炼中的应用

按照上一章节所描述的品牌卖点提炼的步骤,为了提炼出合理的卖点,我们需要按照市场营销的逻辑组织智能体的结构。[heading2]3.3搭建完整智能体[content]在这个工作流中,我们确定了以品牌卖点提炼六步法为核心的流程,而为了最终能够到达第六步应用,我们需要将其他的分析助手加入工作流中,为我们找到更有效的结论,所以这些结构包括:1.品牌卖点定义与分类助手:让智能体理解独特性卖点、通用性卖点、保障性卖点在我们的营销场景中的定义,用提问的方式帮助我们先划定品牌所处的生态位。1.品牌卖点提炼六步法:按照我们所提出的六步法,将探索、排列、抽取、收敛、确认、应用流程提供给智能体。2.STP市场分析助手:让智能体回到市场洞察中,使用STP营销分析对应的市场细分、目标市场和定位。1.用户画像分析助手:目标用户是品牌卖点的核心,如果公司对用户画像没有进行过细致的分析,可以借助智能体去获得精准的用户画像。2.触点收集助手:协助卖点在线上、线下、人员等不同场景中的触点,协助卖点的应用落地。同时还包括一些结构中没有体现,但是在我们后续的品牌卖点应用过程中有效的分析工具:1.用户需求分析的KANO助手:详细分析顾客需求所属的类型,KANO模型将用户需求划分为基本型需求(Must-be Attributes)、期望型需求(Performance Attributes)、魅力型需求(Attractive Attributes)、无差异型需求(Indifferent Attributes)、反向型需求(Reverse Attributes)。2.营销六层转化漏斗分析:曝光层面、点击层面、访问层面、咨询层面、成交层面、复购层面。3.超级转化率六要素:互惠、承诺与兑现、信任状、畅销好评、痛点刺激、稀缺。

新年flag不倒翁—最佳人气奖

1.目标拆解:将用户的新年FLAG拆解成具体的小目标和计划大纲。2.周任务LIST:根据计划大纲,为用户提供简单易做的周任务列表,循序渐进地提高难度。3.FLAG社区:允许用户查看别人的FLAG目标,并许下自己的FLAG,形成一个互助的社区。[heading3]智能体设计思路[content]1.智能体整体架构智能体的核心是通过意图识别来区分用户的不同需求,并根据需求调用不同的模块。以下是智能体的编排方式,包括模块划分、数据流动和交互逻辑。2.功能结构:目标管理模块:负责帮助用户拆解和规划他们的FLAG。任务生成模块:根据用户的目标,生成周任务列表。内置互动模块:允许用户分享和查看他人的FLAG,以及提供支持和鼓励。3.详细拆解:

Others are asking
学习智能体搭建应该从哪里开始?
学习智能体搭建可以从以下几个方面开始: 1. 利用相关平台:例如 Coze、Dify 等 AI 智能体编排平台,它们降低了制作智能体的门槛。 2. 输入人设等信息:创建智能体时,输入相关人设等基础信息,并配置相关工作流。 3. 体验常见工具:对于没有编程基础但对 AI 有一定概念的小白,可以从工具入门篇开始,如 Agent 工具 小白的 Coze 之旅。 4. 参考优秀案例:可以获取现成好用的 Prompt 案例,直接复制、粘贴使用。 5. 了解相关教程:如阅读等详细讲解搭建步骤的文章。
2025-03-13
怎样做一个辅助数学教学的智能体
要制作一个辅助数学教学的智能体,可以考虑以下几个方面: 1. 提示词技术: CCoT:通过正反力矩机制,指导模型识别正确与错误,方法简洁直观。 PoT:作为思维链技术的衍生,适用于数值推理任务,引导模型生成代码再通过代码解释器工具进行运算,能显著提升模型在数学问题求解上的表现。PoT 遵循零样本和少样本的学习范式。 2. 利用现有模型和技术: 如 MathGPT 可用于数学辅导,具备公式编辑等功能。 谷歌 Gemini 可辅助教学,例如通过分析视频并回答相关逐步深入的数学问题,包括理解核心概念、阐述数学原理、提供编程示例等。 此外,还需注意模型性能与计算量、模型参数量、数据大小等因素的幂律关系,以优化智能体的性能。
2025-03-13
做一个数学智能体
要做一个数学智能体,以下是一些相关信息: xAI 创始成员 Christian Szegedy 过去七年一直致力于创造在数学上能与任何人类一样出色的 AI,认为高层次的数学和逻辑推理对编程和物理学的长期发展将起到重要作用,且一旦 AI 开始展示出真正理解深层推理的能力,对理解宇宙至关重要。 YuhuaiWu 一直梦想着用 AI 来解决数学中最困难的问题,去年与 Google 的一个团队合作开发的 Minerva 智能体能在高中考试中获得比普通高中生还高的分数。 Claude 3.7 Sonnet 在推理方面与最新 Grok 3 Beta 模型几乎打成平手,在数学、视觉推理方面略逊色于 Grok 3 Beta,但在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升。 通用人工智能体是智能体设计的最终目标,是一个循环架构,拥有动态推理、规划和自定义代码生成能力。自 2023 年春天 BabyAGI 和 AutoGPT 出现以来,相关研究进展激增。目前最复杂的设计是语言智能体树搜索(LATS),其开创性商业应用包括新的基础模型和编码智能体。
2025-03-13
怎样做一个辅助教学的数学智能体
要制作一个辅助教学的数学智能体,可以参考以下步骤和要点: 1. 准备教学材料:包括相关的数学视频,并为其设计一系列逐步深入的问题。 2. 设定关键步骤: 为视频设置 URI 和 URL,打印视频内容以确保正常。 设计三个相关问题,例如: 问题 1:视频中解释了哪个概念? 问题 2:基于问题 1 的答案,能解释这个基本的数学原理吗? 问题 3:能提供一个简单的 scikitlearn 代码示例来解释这个概念吗? 3. 整合材料和问题:将三个问题和视频整合到一起,创建一个完整的查询内容。 4. 运用相关技术和模型:例如利用谷歌 Gemini 模型等,运行代码并检查输出,查看模型是否正确理解视频内容并恰当回答问题。 5. 考虑其他因素:了解不同的 AI 技术在教学中的应用,如腾讯的智能体、天工 AI 等,以及大语言模型中的规模定律、统一表示、推理能力等相关原理和技术。
2025-03-13
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
什么是 AI智能体
AI 智能体是指拥有各项能力的类似机器人小助手的存在,可以为用户做特定的事情。简单理解,它就像是 AI 机器人,参照移动互联网,类似于 APP 应用的概念。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。体验过 GPT 或者文心一言大模型的小伙伴应该都知道,现在基本可以用自然语言来编程,降低了编程的门槛。 AI 智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。其出现是为了解决如 GPT 或者文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,结合自身业务场景和需求,捏出专属的 AI 智能体来解决问题。 例如,在社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入。在 B 端,帮助 B 端商家搭建 Agent 也是一种应用场景。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。
2025-03-13