Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

老旧照片修复

Answer

以下是关于用 AI 给老旧照片修复上色的详细步骤和方法:

  1. 启用 MutiDiffusion 插件,在显存不够的情况下,仅使用分块渲染功能将图片放大到足够倍数。
  2. 在 PS 里进行角度调整和照片裁切。
  3. 对于人物照片还原,选择 realisian 的写实大模型,提示词直接描述颜色和对应内容。
  4. ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。
  5. 将照片放入后期处理,使用 GFPGAN 算法将人脸变清晰。
  6. 把图片发送到图生图中,打开 stableSR 脚本,放大两倍,切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。
  7. 对于复杂的照片,如人物多、场景复杂、像素低的情况,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定颜色,还可从网上找参考照片让 AI 匹配色调,加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。

作者为白马少年,发布时间为 2023 年 9 月 10 日 19:00,原文网址:https://mp.weixin.qq.com/s/-hlnSTpGMozJ_hfQuABgLw 。

Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】用AI给老照片上色,岁月不改它模样

启用MutiDiffusion插件,不开放大倍数,仅使用分块渲染的功能,能帮助我们在显存不够的情况下,将图片放大到足够的倍数。好了,经过一顿操作,我们就将这张图片处理完成了。对比一下看看,之前的黑白照片和经过上色高清化完成之后效果。同样的步骤,又还原了一张我妈妈的照片。在问到她当时穿的什么颜色衣服的时候,她记得可清楚了,想都没想就告诉我说是绿色的。这两张还算容易的,接下来就遇到比较棘手的照片了。比如这一张,是我外公外婆带着我妈和我舅舅。外公走得更早,我甚至都没见过一面,只有这些照片还记录着他存在的痕迹。而这张照片也有些年头了,一直被外婆好好保存着。人物多、场景复杂,像素非常的低,使得这张照片处理起来难度很大。我首先在ps里面进行了一下角度的调整和照片的裁切,然后使用刚才的步骤进行上色,但是直接上色的结果有点像是加了一层黄色滤镜,有颜色但是年代感还是太强了。而太具体的颜色指定,又容易让画面污染严重,因为内容实在太多了,光是指定衣服就得十来个颜色提示词,AI能分辨得清才怪。所以我决定放弃人物服装的颜色指定,只给一个场景方向,剩下的交给AI去自行决定。于是,我从网上找到了一张仙人洞的照片,让AI去帮我匹配色调。加入第二个controlnet来控制颜色,使用的是t2ia_color的模型。关键词只给了:蓝天、绿树、灰石砖这么简单的几个词。颜色终于正常了,最后经过脸部的修复和放大,得到了最终的效果。

【SD】用AI给老照片上色,岁月不改它模样

将照片放入到后期处理中,使用GFPGAN算法将人脸变清晰,不知道这个功能的可以参考我这篇文章——[【Stable Diffusion】图片高清化+面部修复+一键抠图,一些你不知道的事儿](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487422&idx=1&sn=9cdf7ef37c2acb3c0fc3328d0ba8af74&chksm=c251597af526d06c921ea6728cb2a32bdf1d5f699e19d6ba13b849994e4d01af8a5144132aad&scene=21#wechat_redirect)。这个步骤,可以将我们的五官进行重绘,但是却没有办法将照片中的头发、衣服等其他元素变清晰。所以,接下来我将图片再发送到图生图当中,打开stableSR脚本,放大两倍。这个放大插件是所有插件中对原图还原最精准的,也是重绘效果最好的,不知道的朋友可以参考我的这篇文章——[【Stable Diffusion】超清无损放大器StableSR](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487403&idx=1&sn=cbb96534fa6f58c37cf9fc64bc7ade0c&chksm=c251596ff526d0792b4bba0e21b69427b23e780824bdc75b22f1073e8bad6f61f30199fc8344&scene=21#wechat_redirect)。切换到sd2.1的模型进行修复,vae选择vqgan,提示词可以什么都不写,以免对原图产生干扰。

【SD】用AI给老照片上色,岁月不改它模样

作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-09-10 19:00原文网址:https://mp.weixin.qq.com/s/-hlnSTpGMozJ_hfQuABgLw在最近新上线的controlnet模型中,除了我们之前测试过的一众适配sdxl的模型以外,还增加了一款名为Recolor的新模型,它的作用是可以将黑白的图片进行重新上色。看到这个功能,我首先想到的就是可以用它来修复那些已经年代久远的老照片。毕竟在以前那个年代,没有现在这种可以永远保存的数码拍照技术,很多洗出来的照片也都随着岁月的流逝而褪去了色彩。如果能用AI技术恢复这些往日的时光,也许能唤醒我们心底的一些温暖。于是,我联系爸妈帮我找来了一些他们珍存的照片。他们也很热心于这件事情,立马给我发来了一大堆照片,其中有很多我也没见过的他们年轻的时候的样子,还包括我爷爷奶奶外公外婆那一辈的回忆。虽然很多照片都是黑白的,但是仍然能感受到那个时候的阳光和清风。这是我的奶奶,她离开已经有十几年了,年轻时候留下的照片不多,这一张算是保存得很好的了,那个年代的人物照片总能让人感受到一种独特的气质。既然是人物照片的还原,我这里就选择了realisian的写实大模型。提示词直接描述颜色和对应的内容。比如黑色的头发、黄色的皮肤、深蓝色的衣服、浅蓝色的背景。因为黑白照片,颜色无从判断,所以有些只能靠猜测了。ControlNet这里选择Recolor,预处理器有两个,经过我的测试,选择“recolor_luminance”的效果会更好一些。

Others are asking
老旧照片高清修复
以下是关于老旧照片高清修复的方法: 1. 使用 Stable Diffusion 进行修复: 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。可参考文章。 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。可参考文章。 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 为做到颜色与内容的统一,启用 cutoff 插件来进行控制,依次按顺序设置好颜色提示词。可参考文章。 2. 使用 ComfyUI 进行修复: 结合 Flux Controlnet Upscale 模型,以前的工作流比较复杂,现在只要十几个基础的节点就能实现同样的效果,甚至可能更好。 参数调节:一般先确认放大的倍数,然后根据出来的图片调整 controlNet 的强度。 ControlnetUpscaler 放大模型:Flux.1dev ControlNet 是 Jasper 研究团队为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,通过特定代码加载管道,加载控制图像并进行图像处理。其训练方式采用合成复杂数据退化方案,结合图像噪声、模糊和 JPEG 压缩等多种方式对真实图像进行人工退化。 Flux Ultimator 细节增强:能增加小细节,让图像尽可能逼真,可放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用效果好,结合时需将强度降低小于 0.5。 T5 Clip:如果发现出来的图片质量细节不够,选择 fp16 的版本。 图像的传递:controlNet 这里传递的应该是上传的原始图片,因为这个是 controlNet 而不是潜空间图像。
2025-01-19
大模型可以修复老旧的分辨率低的视频吗
大模型在修复老旧低分辨率视频方面是可行的,但具体效果因模型和方法而异。 例如,使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型、StableSR 模块和 VQVAE 等,通过不同的放大方法进行测试。如“Ultimate SD upscale”脚本放大,重绘幅度不同效果有别,重绘幅度大可能导致人物失真。“后期处理”的放大方法能使眼神更锐利,但对模糊的头发改善有限。而 StableSR 的放大则需要进行相应的模型和参数调整。 另外,像 Sora 这样的大型视觉模型,能够在原始尺寸上训练、理解和生成视频及图像。它可以处理不同格式和分辨率的视觉数据,保持原始宽高比,改善生成视频的构图和框架。其基础模型用于低分辨率视频生成,通过级联扩散模型细化提高分辨率,采用 3D UNet 架构,结合多种技术和方法,能生成高保真度且具有可控性的视频。
2024-11-17
高清视频修复ai工具
以下为一些高清视频修复的 AI 工具: 1. 星流一站式 AI 设计工具: 高级模式下,基础模型允许使用更多的微调大模型,图片参考允许使用更多的图像控制功能。星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法影响图像放大后的图像质量,重绘幅度与初步生成的图像的相似度,其他参数默认即可。 采样器和采样步数会影响出图质量和生成时间,随机种子和 CFG Scale 也有相应作用,脸部/手部修复利用算法对人像的脸部或者手部进行修复。 2. Pika: 发布 Pikaddition 能力,可以将用户图片物体融合到拍摄视频,不会改变原视频且保证新视频创意效果自然。 支持用户自行上传视频(视频时长需 5s 以上),支持物体、人物(卡通、真人)图像,有 15 次免费尝试机会。 使用方法:进入 Pika 官网,页面底部选择 Pikaddition,上传视频、图像,输入文字描述提示词,点击确认即可。 地址:https://pika.art/ 3. Topaz Labs: 推出 Starlight 首个用于视频修复的扩散模型,只需输入素材,AI 可自动降噪、去模糊、放大、抗锯齿,无需手动调整与参数调整,达成专业视频高清修复。 目前正在 Beta 中。 地址:https://www.topazlabs.com/ 4. Tusiart: 具有高清修复功能,在本来设置的图像分辨率基础上,让图像分辨率变得更加精细。 有 ADetailer 面部修复插件。
2025-04-14
旧照片修复
旧照片修复是 AI 绘画领域中的一项重要应用。以下是关于旧照片修复的一些相关信息: 以往解决旧照片修复问题往往需要搭建极为复杂的工作流,现在 GPT 4O 只需要一句话就可以实现。 图像放大修复是 AI 绘画领域必不可少的一部分,利用 AI 技术进行图像修复,可以让模糊的旧照片重现清晰,保留珍贵回忆。例如,以前手机拍摄的低分辨率图片,放到如今智能手机上观看会非常模糊,这时可用 AI 技术进行高清修复。 ComfyUI 结合特定工作流,只需十几个基础节点就能实现较好的老照片修复效果。 参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。 Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练,目的是让模型学会处理各种真实世界中可能遇到的图像退化情况。 Flux Ultimator 能增加小细节,增强色彩,在 0.1 的强度设置下也有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 若图片质量细节不够,可选择 T5 Clip 的 fp16 版本。
2025-04-14
老照片修复
老照片修复是一个具有一定复杂性但通过 AI 技术可以实现较好效果的领域。以下是一些相关信息: 在解决老照片修复问题上,以往 AI 往往需要搭建极为复杂的工作流,而现在 GPT 4O 只需要一句话就可以实现。 对于老照片上色,可启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下将图片放大到足够倍数。 对于复杂的老照片,如人物多、场景复杂、像素低的情况,可在 PS 里进行角度调整和照片裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前的工作流较复杂,现在只要十几个基础节点就能实现同样甚至更好的效果。一般先确认放大倍数,再根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用特定训练方式处理各种真实世界中可能遇到的图像退化情况。Flux Ultimator 能增加小细节和放大色调丰富性、深度,在 0.1 强度设置下有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。若图片质量细节不够,可选择 fp16 版本的 T5 Clip。
2025-04-14
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,实现方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,例如 GPT 4O 只需要一句话,就可以实现部分修复需求。 在具体的修复方法中,如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定,还可加入第二个 controlnet 来控制颜色。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只要十几个基础的节点就能实现同样的效果甚至更好。其中涉及参数的调节,一般先确认放大的倍数,然后根据出来的图片来调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-11
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,处理方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,如 GPT 4O 等技术,只需要一句话就可以实现部分修复需求。 在具体的修复方法中,例如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。如果直接上色效果不佳,可以只给场景方向的提示词,让 AI 自行决定颜色。还可以加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,并给出简单的关键词,如蓝天、绿树、灰石砖等。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前较为复杂的工作流现在只需十几个基础节点就能实现同样甚至更好的效果。在参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时需将强度降低小于 0.5。如果发现出来的图片质量细节不够,可以选择 fp16 版本的 T5 Clip。
2025-04-10
照片修复
以下是关于照片修复的相关信息: 使用 Gemini 2.0 Flash 进行照片修复: 零门槛:即使不会 PS,只要会打字就能操作。 速度快:几秒钟出结果。 效果提升小技巧:指令要具体清晰,比如“把帽子改成红色,加个星星图案”;使用清晰的照片,模糊的图可能效果不佳;多尝试修改指令。 图像高清修复的实现技术拆解: 整个流程分为三部分: 1. 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 2. 图像高清修复:使用 Iceclear/StableSR 等模型进行修复和 2 倍放大,搭配合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 3. 图像高清放大:用 realisticVision 底膜进行二次修复,使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型二次放大。 此外,GPT 4O 在解决老照片修复等问题时,以往需要搭建复杂工作流,现在只需一句话即可实现。
2025-04-10
如果改变照片中人物的表情
要改变照片中人物的表情,可以通过以下几种方式: 1. 在使用 SD 脸部修复插件 After Detailer 时,输入如“伤心、流泪”这样针对表情的正负提示词,人物的表情会进行相应改变。但输入“带着墨镜”可能没有效果。 2. 使用 Magic Brush 工具,选中人物的眉毛、眼睛、嘴唇等部位,通过调节轨迹的方向来实现合理的表情变化。 3. 在 Midjourney V6 中,若遇到无法改变角色脸部等问题,可按照以下步骤排除故障:首先确保写了强有力的提示以建议新的姿势、风格或细节;若角色抗拒被操纵,可能是 cref 图像支配了提示,可通过使用 cw进行处理,尝试将提示与较低的 cref 权重一起使用,如 cw 60,按照特定步骤操作,还可考虑使用 来恢复面部区域。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
如何让老照片变清晰
以下是让老照片变清晰的方法: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 5. 对于复杂的照片,可先在 ps 里面进行角度调整和照片裁切,然后使用上述步骤进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,给出简单的关键词,如“蓝天、绿树、灰石砖”。 另外,进行超清无损放大修复需要准备以下文件和操作: 1. 使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 2. 将 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 3. 将 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2025-04-13