Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想做一个智能营养大师的智能体

Answer

以下是关于制作智能体的一些信息供您参考:

  • 画小二通过 Coze 定制开发插件案例中,包括创建智能体、添加插件,成功查询出食物的营养热量,还可发布到微信中成为专职客服技能,并有粉丝交流学习群和手把手教程。
  • 支付宝智能体中的智能饮食助手能结合用户当天的口味偏好,整合周边美食信息与不同平台优惠券,提供用餐建议列表。
  • 今年 AI 智能体很火,Coze 等平台降低了制作门槛。在上篇文章中已讲解过用 Coze 搭建智能体工作流的全步骤,若想从头学习,可使用「飞书·稍后读助手」收藏文章。

如果您想制作智能营养大师的智能体,建议您综合参考以上案例和方法,并根据您的具体需求进行设计和开发。

Content generated by AI large model, please carefully verify (powered by aily)

References

画小二:通过Coze定制开发插件案例:根据食物识别营养热量

也可以发布到自己微信中,成为一个专职的客服技能。[heading1]四、发布使用[content]成功查询出食物为羊肉串,热量为430千卡。[heading1]五、粉丝交流学习群[content]AIGC商业案例实操课画小二微信交流群画小二微信公众号[heading1]六、手把手教程[heading2]1、会员详细教程[content]根据以上内容若还是无法掌握该技能,本节视频有35分钟的手把手视频会员教程:[heading2]2、AIGC商业案例实操课海报[content]备注:本文档教程配套项目文档,版权归画小二所有,禁止商用。

搓了一周支付宝智能体,我看到的人机交互新未来

1.个人护理顾问:根据你的肤质、季节变化、预算,监控各家品牌优惠信息和新品发布,推荐最有效、优惠的选品组合2.智能饮食助手:结合用户当天的口味偏好(比如就想吃炸鸡or完全不想吃米饭),整合周边美食信息与不同平台优惠券,提供用餐建议列表3.家庭理财管家:监控各银行各类投资产品收益率、家庭资产情况,根据理财目标,提供更加动态的配资建议决策耗费心力。而在这个信息过载的时代,这种负担被进一步放大。正如双十一选购,我们被迫在多个平台间来回切换,了解活动日程,比对不同店铺价格,关注各种隐藏优惠——本该“爽快买买买”的决策变成了一场信息收集的马拉松。AI Agent的出现,恰如“时势造英雄”,通过监控多方信息源,解读个性化需求,只需要确认“AI决策建议简报”,用户终于可以卸下部分“收集-决策”的重担。

Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

今年AI智能体很火,Coze、Dify等AI智能体编排平台,大大降低了制作AI智能体的门槛。上篇文章[万字实践教程,全面入门Coze工作流|用Coze打造AI精读专家智能体](https://mp.weixin.qq.com/s/r40BDHKq8NC547cehAzOzw)中已经清晰的讲解过用Coze搭建AI工作流的全步骤,如果你想从头学习Coze的智能体搭建方法,建议先使用「飞书·稍后读助手」收藏文章,按需阅读。接下来,就直接一起来看这个bot是怎么设计落地的吧。

Others are asking
我想要学习coze等智能体 你可以给我推荐高质量的免费课程吗
以下是为您推荐的学习 Coze 智能体的高质量免费课程: 通识篇: 现有常见 AI 工具小白扫盲: AI 常见名词、缩写解释: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库: 大聪明:保姆级教程:Coze 打工你躺平: 安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent 基础教程:Coze“图像流”抢先体验: YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏: 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档: 【智能体搭建共学课】一步步教你玩转 Coze 智能体,新手 0 门槛教学特邀讲师:元子:[https://www.bilibili.com/video/BV1mXqGY1EwJ/?spm_id_from=333.999.0.0&vd_source=84aaf5d504fda49d36287bb4930a47a2)(1 小时 32 分开始)
2025-02-08
关于人工智能介绍的ppt
以下是关于人工智能的一些相关内容: 法律方面:在 HR 6216 法案中,对“Advisory Committee(咨询委员会)”“Agency Head(机构负责人)”“Artificial Intelligence(人工智能)”等术语进行了定义。其中,“Artificial Intelligence(人工智能)”指的是一种基于机器的系统,能针对给定的一组人类定义的目标,在真实或虚拟环境中进行预测、推荐或决策,并通过机器和人类输入来感知环境、抽象感知为模型以及利用模型推理制定信息或行动的选项。 技术学习方面:包括创建 AI 应用的操作界面讲解,如前端、后端基础及界面组件布局,还有容器操作与页面布局等知识。 制作 PPT 的 AI 产品: Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/
2025-02-08
我想做个智能体专门帮我写更行各业的朋友圈收钱文案,我应该如何开始,我没做过扣子的智能体,只是在豆包简单做过
如果您想做一个智能体专门帮您写各行各业的朋友圈收钱文案,可以参考以下步骤: 1. 明确智能体的名称和简介:例如可以命名为“朋友圈收钱文案生成器”,简介中说明其专注于为各行各业生成吸引人的收钱文案。 2. 确定应用场景和目标人群:目标人群可以是各类需要在朋友圈推广业务并收款的个人或团队。当前痛点可能包括难以创作出有吸引力和针对性的收钱文案,解决的问题是提供高效、优质且符合行业特点的文案生成服务。 3. 设计智能体的主要功能: 深度挖掘产品或服务的卖点。 生成符合用户需求和心理的优质文案。 能够适应不同行业的特点和需求。 4. 技术实现方面: 设计工作流,包括输入、对接知识库、借助模型处理、输出等环节。 建立相关的数据库,收集和整理各行各业的文案素材、营销知识等。 对收集的资料进行清洗和二次校对,确保准确性和专业性。 5. 商业化场景: 可以为个人创业者提供文案支持,帮助他们在朋友圈推广业务并收款。 为小型企业的营销团队服务,提升其在社交媒体上的营销效果。 需要注意的是,在医疗等严肃领域,为了保证回答的准确性,应约定回答只能来自于经过严格筛选和校对的知识库。
2025-02-07
我的工作需要根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表,有没有智能体可以做这个工作
智能体可以帮助您完成根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表的工作。 智能体可以根据其复杂性和功能分为以下几种类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。比如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。比如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 在实际应用中,多智能体 AI 搜索引擎的方案如下: 1. 第一步,快速搜索补充参考信息:根据用户的任务,使用搜索工具补充更多的信息,例如使用工具 API WebSearchPro。 2. 第二步,用模型规划和分解子任务:使用大模型把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。 3. 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索的能力,还能够自主分析并进行多轮搜索任务。 4. 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。 此外,生物医药小助手智能体是由 1 个工作流和 6 个数据库实现的。工作流相对简单,而数据库包括公众号文章、执业药师教材、执业医师讲义、药监局新药审评报告、中国医药企业融资动态、药物对外授权动态、全球药物销售额等。在医疗领域,为保证回答的准确性,提示词约定回答只能来自于知识库。其商业化场景包括医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等。
2025-02-07
为什么要用智能体 提示词和提问题什么区别
智能体的使用具有重要意义,写好提示词是创建智能体的第一步。设计提示词有多种原则和模型,如 CRISPE 框架,其中包括能力与角色(CR)、洞察(I)、陈述(S)、个性(P)、实验(E)等方面,明确希望 AI 扮演的角色、具备的背景信息、要做的事、回答风格以及提供多个答案等。FewShot COT 模型通过加入示例能有更好效果,可提供 1 到多个样本;ZeroShot COT 模型则不增加示例样本。TOT 模型先分步骤,每个步骤产生多个结果并选择,再进行下一步。SelfConsistent COT 模型则注重一个问题的多种解法。 从使用角度看,提示词可分为任务型和拟人化型。任务型提示词高度专业化、流程清晰,遵循严格工作逻辑,专注完成特定任务或解决问题;拟人化提示词模拟人类交互方式,用于陪伴聊天等,需要更细致全面的设计以呈现丰富个性和背景。 在生成式人工智能模型中,提示词是用户输入用于引导模型产生期望输出的文本,可简单可复杂,包含指令、问题、输入数据和示例等,为得到期望回应,通常必须包含指令或问题,其他元素可选。在 LLM 中,基本提示词可直接提问或提供特定任务指令,高级提示词则有更复杂结构,如思维链提示词引导模型逻辑推理得出答案。 提示词和提问题的区别在于,提示词不仅包含问题,还可能包含指令、输入数据和示例等,以更全面地引导模型产生期望的输出。而提问题相对较为简单直接,侧重于获取答案。
2025-02-07
吴恩达人工智能课
吴恩达(Andrew Ng)是人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域有重要贡献,是在线教育平台 Coursera 的联合创始人。曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain),还曾担任百度公司首席科学家并领导百度研究院。 吴恩达以深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及。他是多个人工智能和机器学习开源项目的倡导者,如 TensorFlow 和 Caffe。 他致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上极受欢迎,吸引全球数百万学生参与。 在课程方面,吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》,在 B 站可搜索对应关键词获取资源,相关学习笔记可参考 。推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ ,视频下载地址:https://pan.quark.cn/s/77669b9a89d7 ,OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 。 内容由 AI 大模型生成,请仔细甄别。
2025-02-07
找出剧本大师这篇prompt
以下是为您找到的与“剧本大师”相关的 prompt 内容: 编剧:👉根据主题创作一个包含故事背景、人物以及对话的剧本。||我要你当编剧。您将为一部长篇电影或可以吸引观众的网络系列开发引人入胜且富有创意的脚本。首先想出有趣的角色,故事的设置,角色之间的对话等。一旦你的角色发展完成创建一个令人兴奋的故事情节,充满曲折,让观众保持悬念,直到最后。我的第一个要求是“剧本主题” 影评人:👉我希望你是影评人,从情节、表演、摄影、导演、音乐等方面评论电影{电影名}||我希望你扮演影评人的角色。您将需要观看电影并以清晰的方式对其进行评论,提供有关情节、表演、摄影、导演、音乐等的正面和负面反馈。我的第一个建议请求是“电影评论角度”
2024-09-04
有帮助草图大师建模的ai吗
以下是一些能够帮助草图大师建模的 AI 工具: 1. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能帮助创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,可根据用户输入的设计目标和约束条件自动产生多种设计方案。 此外,还有一些图片生成 3D 建模的工具,也可能对草图大师建模有帮助: 1. Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 3. CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域的模型生成。 5. VoxCraft:免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供了图像到 3D、文本到 3D 和文本到纹理等多种功能。 如果您需要绘制逻辑视图、功能视图、部署视图,以下工具可供选择: 1. PlantUML:文本到 UML 的转换工具,可通过编写描述性文本来自动生成序列图、用例图、类图等,从而帮助创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 请注意,虽然这些工具可以辅助创建相关视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-08-23
营养师身份提示词
以下是一些与营养师相关的提示词示例: 作为一名营养师,我想设计一个具有{要求}的食谱。你能提供一个建议吗? 营养规划师将根据用户提供的当天饮食信息进行分析,计算并输出用户还可以摄入的营养成分数值,并根据个人情况给出营养建议。其作者为李继刚,具备营养师资格证书和注册营养师资格证书,拥有丰富的营养学知识,了解不同年龄段和不同性别用户的营养需求指标。在营养规划方面,偏好个性化定制和科学合理的饮食方案,注重用户健康以及满足其个人喜好和需求。会以 Markdown 表格的形式呈现信息。您可以参考
2024-11-06
ai营养师提示词
以下是一些与 AI 营养师相关的提示词示例: 作为一名营养师,为用户设计一个具有特定要求的食谱,例如:“👉我想设计一个{要求}食谱,帮我提供建议”。 营养规划师将根据用户提供的当天饮食信息进行分析,计算并输出用户还可以摄入的营养成分数值,并根据个人情况给出营养建议,例如:“营养规划师|李继刚|个人|营养规划师将根据用户提供的当天饮食信息进行分析,计算并输出用户还可以摄入的营养成分数值,并根据个人情况给出营养建议。”
2024-11-06
建立一个微信群机器人
以下是建立一个微信群机器人的相关指导: 纯 GPT 大模型能力的微信聊天机器人搭建 宝塔面板提供了图形化的管理界面,操作简单直观,许多常见任务都可以通过点击按钮完成。 丰富的在线资源:宝塔面板和 Docker 都有详细的官方文档和教程,您可以随时查阅。 极简未来平台的支持:极简未来平台也提供了详细的操作指南和技术支持,遇到问题可以查阅官方文档或寻求帮助。 社群和论坛:加入相关的技术社群或论坛,向有经验的用户请教,也是一个很好的学习途径。 定期备份和监控:设置定期备份和监控,确保在出现问题时可以及时恢复。 疑问解答 如果之后遇到问题,可以采取以下几种方式来解决: 1. 查阅官方文档和教程:极简未来平台、宝塔面板和 Docker 都有详细的官方文档和教程,可以帮助解决大部分问题。 2. 联系技术支持:极简未来平台提供技术支持服务,可以联系平台的技术团队寻求帮助。 3. 加入技术社群:加入相关的技术社群,向有经验的用户请教,获取问题的解决方案。 4. 在线论坛和社区:在在线论坛和社区发布问题,寻求其他用户的帮助和建议。 为了避免长时间不操作后忘记步骤,可以采取以下措施: 1. 制作操作手册:将每一步的操作记录下来,制作成操作手册,方便日后查阅。 2. 定期操作:定期登录服务器,进行简单的操作和维护,保持熟练度。 3. 视频教程:可以录制自己的操作视频,作为教程,日后查看时更直观。 4. 自动化脚本:对于一些常见的运维任务,可以编写自动化脚本,简化操作步骤。 AGI 大群的机器人原理 飞书的官方技术同学使用 RAG 技术将的内容进行处理,然后在飞书大群中接入一个智能机器人,当机器人被艾特回答问题的时候,其背后就是针对这个 AI 知识库进行的提问。RAG 技术会将知识库中最符合的相关文档回复给用户。基于 RAG 技术,也可以搭建一个微信机器人帮助进行课程相关答疑。 Coze API 接入微信群 Bot 的技术实现原理 登录宝塔面板后,在宝塔面板当中的来可视化的控制云服务器,在上面部署 docker 容器,启动 COW 项目与微信取得关联。chatgptonwechat(简称 CoW)项目是基于大模型的智能对话机器人,可以接入微信公众号、企业微信应用、飞书、钉钉,可选择 GPT3.5/GPT4.0/GPT4o/Claude/Gemini/文心一言/讯飞星火/通义千问/LinkAI/ChatGLM/月之暗面,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源。用这个方式来与微信进行链接。 具体操作步骤如下: 1. 点击“Docker”中的“项目模板”中的“添加”按钮。 2. 项目模板代码示例如下:将上面编译好的内容复制进来。 3. 在容器中创建容器,选择容器编排,填入模板和名称,确定。 4. 现实运行成功。 5. 点击容器后,可以看到运行的是两个服务,因为接口文档中启动了两个服务。 6. 然后点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。这个界面不会实时更新显示,需要手动刷新一下。点击“刷新日志”,如果看到 WeChat login success,就成功将 Bot 接入微信中了。
2025-02-08
有10个数据如何分析其中9个数据对另外一个数据的影响因子大小
在面对有 10 个数据,需要分析其中 9 个数据对另外一个数据的影响因子大小时,通常可以采用以下几种方法: 1. 线性回归分析:建立线性回归模型,将这 9 个数据作为自变量,另一个数据作为因变量,通过回归系数来评估影响因子的大小。 2. 相关性分析:计算这 9 个数据与目标数据之间的相关系数,相关系数的大小和正负可以反映影响的程度和方向。 3. 逐步回归分析:通过逐步引入和剔除变量的方式,确定对目标数据有显著影响的变量及其影响因子。 需要注意的是,在进行分析之前,要确保数据的质量和合理性,并且根据数据的特点和分析目的选择合适的方法。
2025-02-08
作为一个小白,如何开始自己的ai学些
对于新手学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-08
帮我找到deepseek的培训教程,我是一个技术小白
以下是关于 DeepSeek R1 的培训教程相关内容: DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量(数千条)人工精选的思维链数据进行初步引导,建立起符合人类阅读习惯的推理表达范式。随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。 准确率奖励用于评估 AI 提供的最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间,以便人类观察模型的推理过程。 更有趣的是,DeepSeek 还有一个更加聪明的 R1zero 实验版本,这个版本甚至没有进行任何的初始引导,而是采用了完全从零开始的强化学习。实验表明,无需任何人类的监督训练,R1zero 自然而然地学会了用更多的思考步骤来解决推理任务,还学会了在推理过程中反思先前的推理步骤,探索解决问题的替代方法。但因为没有微调,R1zero 的输出内容可读性差、语言混合,且风险不可控。所以我们见到的是经过符合人类阅读偏好的冷启动与微调过的 R1 版本,确保 AI 生成内容的稳定、安全、道德、无害。 附:DeepSeek R1 完整训练过程,因文章定位与行文节奏设计,上文仅对影响 R1 涌现关键智能的前两个训练步骤进行了讲解。更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948 参考文献: 1. 碎瓜波斯兔子《Deepseek R1 可能找到了超越人类的办法》https://mp.weixin.qq.com/s/YgRgDw8ndSHJwcPNMqWZNQ 2. 大聪明赛博禅心《DeepSeek R1 是怎么训练的?》https://mp.weixin.qq.com/s/Wuz0H9jmZYV1jM1YtwTlA 3. 老刘说 NLP《可视化角度具象化理解 DeepSeekR1 类推理大模型的习得进程》https://mp.weixin.qq.com/s/ytKTGTgU2T7jSNrBghX1cA 4. Tianzhe Chu et al.《SFT 记忆,RL 泛化:基础模型训练后的比较研究》https://arxiv.org/html/2501.17161 5. Metaso 长思考对话《RL 和 SFT 在后训练中的区别》https://metaso.cn/s/WGdOwPC
2025-02-07
给我一个关于ai应用提示词的整理文档
以下是为您整理的关于 AI 应用提示词的相关内容: Apple Intelligence 中的提示词: 在最新开发者测试版中包含生成式 AI 功能,其模型中的指示会在对聊天机器人说话前默认出现。 如“有用的邮件助理”AI 机器人会被告知如何根据邮件内容提问,指示包括“将答案限制在 50 个单词以内,不产生或编造虚假信息”等。 生成 Apple Photos 中“回忆”视频的指示集存在一些限制,如“不要写宗教、政治等负面内容”。 AI 应用于工作场景制作单词卡片的提示词: 核心目的包括生成符合要求的单词卡内容,并填入 Excel 文件中。 生成过程中先给出基本示例,再根据不同生成内容限定规则。 测试结果显示可同时解析多个单词,大体格式符合要求,但存在部分效果偏差和设定改变,可通过复制粘贴等方式处理。 批量产出时需上传压缩文件并完成套版操作。 关于 AI 幻觉的提示词相关思考: 网上找到的总结公众号的提示词存在输出与实际不符的情况。 总结类文章,AI 可能未读完整个文章,大语言模型可能未真去搜索网页,更像是开发商的“狡猾”,而非“AI 幻觉”。
2025-02-07
请给我推荐一个能够阅读网页链接内部信息的AI模型
以下为您推荐能够阅读网页链接内部信息的 AI 模型相关内容: 有一款 AI 浏览器插件,在产品化开发阶段,需要考虑如何稳定获取网页内容、如何选择适合的 AI 大模型 API 服务以及如何构建生产级提示词等问题。 在获取网页内容方面,由于大模型对话产品的外链解析方式容易遭到平台反爬机制制裁,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定、经济的解决方案。比如 AI Share Card 插件,可以获取网页元素清单。开发时,您可以拿着初版提示词,询问 AI 来设计获取相关元素的 js 代码。 对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,需要传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。如果缺少参数设定经验,可以先询问 AI 相关设定的合适值,再逐步调试效果。 同时需要注意,使用 AI 写东西时,它可能会“产生幻觉”生成错误内容,需要检查所有内容。而且 AI 不会真正解释自己,可能给出编造的答案,使用时要对其输出负责。
2025-02-07