Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

应用

Answer

以下是关于 AI 应用的相关内容:

Cursor 的 Apply 应用

  • 在我们的博客文章中可阅读更多关于如何构建即时申请的信息。
  • Cursor 的 Apply 允许您将聊天中的代码块建议快速集成到您的代码中。要应用代码块建议,可按每个聊天代码块右上角的播放按钮。这将编辑您的文件以合并 Chat 生成的代码。由于在 Chat 中可添加最多的上下文并与模型进行最多的来回交流,因此建议使用 Chat+Apply 进行更复杂的 AI 驱动的代码更改。应用代码块后,您可以浏览差异并接受或拒绝更改,也可以点击聊天代码块右上角的“接受”或“拒绝”按钮。Ctrl/⌘Enter 键接受,Ctrl/⌘Backspace 键拒绝。

Embedding

  • 在计算机科学中,“embedding”是一种将对象(如词语、用户或商品)映射到数值向量的技术。这些向量捕捉了对象之间的相似性和关系。
  • Embedding 的核心属性是把高维的、可能是非结构化的数据,转化为低维的、结构化的向量,目的是让机器可以理解和处理这些数据,从而进行有效的学习和预测。例如在推荐系统中,可把每个商品转化为一个向量,相似的商品在向量空间中有相似的向量,从而为用户推荐相似商品。

AI 的应用场景

  • 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。
  • 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。
  • 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。
  • 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。
  • 交通运输:(未具体阐述相关应用)
Content generated by AI large model, please carefully verify (powered by aily)

References

Apply 应用

Read more about how we built instant apply in our[blog post](https://cursor.com/blog/instant-apply).在我们的[博客文章](https://cursor.com/blog/instant-apply)中阅读更多关于我们如何构建即时申请的信息。Cursor’s Apply allows you to quickly integrate a codeblock suggestion from the chat into your code.Cursor的Apply允许您将聊天中的代码块建议快速集成到您的代码中。[heading3][heading3]Apply Code Blocks应用代码块[content]To apply a code block suggestion,you can press on the play button in the top right corner of each chat code block.要应用代码块建议,您可以按每个聊天代码块右上角的播放按钮。This will edit your file to incorporate the code produced by Chat.Since you can add the most context and have the most back-and-forth with the model in Chat,we recommend Chat+Apply for more complex AI-driven code changes.这将编辑您的文件以合并Chat生成的代码。由于您可以在Chat中添加最多的上下文并与模型进行最多的来回交流,因此我们建议使用Chat+Apply进行更复杂的AI驱动的代码更改。[heading3][heading3]Accept or Reject接受或拒绝[content]Once you have applied a code block,you can go through the diffs and accept or reject the changes.You can also click on the“Accept”or“Reject”buttons in the top right corner of the chat code block.应用代码块后,您可以浏览差异并接受或拒绝更改。您也可以点击聊天代码块右上角的“接受”或“拒绝”按钮。Ctrl/⌘Enter to accept,Ctrl/⌘Backspace to reject.Ctrl/⌘Enter键接受,Ctrl/⌘Backspace键拒绝。

什么是Embedding

这两个例子都显示了Embedding如何帮助我们处理高维度和复杂的数据,并使机器学习模型能够从中捕捉到有用的信息。[heading2]GPT4给出的答案:[content]让我们想象一下,你正在玩一个叫做"猜词"的游戏。你的目标是描述一个词,而你的朋友们要根据你的描述猜出这个词。你不能直接说出这个词,而是要用其他相关的词来描述它。例如,你可以用"热"、"喝"、"早餐"来描述"咖啡"。这种将一个词转化为其他相关词的过程,就很像计算机科学中的"embedding"。在计算机科学中,"embedding"是一种将对象(如词语、用户或商品)映射到数值向量的技术。这些向量捕捉了对象之间的相似性和关系,就像你在"猜词"游戏中使用相关词描述一个词一样。Embedding的核心属性是把高维的,可能是非结构化的数据,转化为低维的,结构化的向量。这样做的目的是让机器可以理解和处理这些数据,从而进行有效的学习和预测。以推荐系统为例,如果我们想要推荐相似的商品给用户,我们可以用embedding技术把每个商品转化为一个向量。在这个向量空间中,相似的商品会有相似的向量。当一个用户喜欢某个商品时,我们就可以找到向量空间中最接近这个商品的其他商品,推荐给用户。这就是embedding在现实生活中的一个应用。

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

Others are asking
企业管理咨询顾问应用AI辅助工作的最佳实践
以下是企业管理咨询顾问应用 AI 辅助工作的一些最佳实践: 对于企业管理者: 1. AI 辅助决策:在小规模决策中运用 AI 分析工具,如利用其分析客户反馈或市场趋势数据,以此作为决策参考。 2. 员工培训计划:制定 AI 工具使用的培训计划,助力团队成员在日常工作中有效利用 AI。 3. 流程优化:识别公司内可能受益于 AI 自动化的重复性任务,先从一个小流程开始测试 AI 解决方案的效果。 4. AI 伦理和政策:着手制定公司的 AI 使用政策,确保 AI 的应用符合伦理标准和法律要求。 对于商业顾问: 1. 工具服务小型企业:生成式 AI 对于小型企业是一个重要的应用场景,如 Sameday 可接电话并预约,Truelark 能处理短信、电子邮件和聊天等。 2. 特定类型企业的垂直化工具:出现了为特定类型企业工作流定制的工具,如 Harvey 和 Spellbook 帮助法律团队自动化任务,Interior AI 和 Zuma 在房地产行业发挥作用。 无论您属于哪个群体,与 AI 协作是一个学习过程。应从小处着手,保持好奇心和开放态度,将 AI 视为强大的工具而非完全依赖的解决方案。同时,始终保持批判性思维,您会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。
2025-02-06
企业级应用集成AI大模型架构白皮书
以下是关于企业级应用集成 AI 大模型架构的相关内容: 从整体分层的角度来看,目前大模型整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 此外,以下报告也涉及相关内容: 1. 量子位智库发布的《》概述了大模型技术在多个行业中的应用和发展趋势。强调大模型在编程、教育、医疗等领域的重要性,并预测其将推动生产力和创新服务的增长。大模型业务模式涵盖应用开发、模型 API 和模型服务,其中模型服务和 API 是核心。报告还讨论了大模型在不同地域和行业的落地情况,以及企业在大模型技术投资方面的需求。 2. 亿欧智库发布的《》聚焦于企业中人工智能大模型的应用和落地情况。报告涵盖了 AI 大模型在企业中的应用现状、发展趋势以及面临的挑战。它详细分析了 AI 技术如何推动企业创新、提高效率和降低成本,并探讨了不同行业如何利用 AI 大模型实现数字化转型。此外,白皮书还提供了关于如何克服实施过程中的障碍和最大化 AI 大模型价值的见解。 对于大模型 API,与大模型对话产品的提示词不同。对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,可以看到需要在请求中传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。可以构建相应的 API 请求内容,包括设定系统提示词定义基础任务、设定用户提示词提供具体任务数据并要求大模型按 JSON 格式返回生成结果等。如果缺少参数设定的经验,也可以先询问 AI 文本总结类的模型 API 请求,temperature 设定多少合适,再逐步调试效果即可。
2025-02-06
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供定制服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和应对风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者初期使用公开金融数据训练模型,后续会生成自己的数据,并以 AI 作为新产品分销突破口。
2025-02-06
我想从普通的功能型产品经理转变为AI应用产品经理,应该怎么进阶,需要掌握什么能力?
要从普通的功能型产品经理转变为 AI 应用产品经理,可以从以下几个方面进阶并掌握相应能力: 一、不同阶段的能力要求 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级 技术研究路径或商业化研究路径。 对某一领域有认知,能根据需求场景选择解决方案。 利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级 有一些成功落地应用的案例,产生商业化价值。 二、AI 产品经理与传统互联网产品经理层级对应 传统互联网产品经理层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 三、AI 产品经理需掌握的能力 1. 懂得技术框架,对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 理解产品核心技术,了解基本的机器学习算法原理,做出更合理的产品决策。 3. 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 4. 评估技术可行性,在产品规划阶段做出更准确的判断。 5. 把握产品发展方向,了解算法前沿。 6. 提升产品竞争力,发现产品的独特优势,提出创新的产品特性。 7. 具备数据分析能力,很多 AI 算法都涉及到数据处理和分析。 四、其他能力 1. 语言学能力,锻炼语言表述能力,更精准地用语言描述问题。 2. 业务理解和 AI 嵌入能力,找到业务中需要应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 3. 维度转换能力,将各种问题、业务数据转化为语言描述,将通用模块问题转化为通用问题模块。 总之,AI 产品经理要关注场景、痛点、价值,不断提升自身能力,以适应市场需求。
2025-02-06
AI在金融领域的应用
AI 在金融领域有以下应用: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 的服务,回答常见问题。 5. 个性化的消费者体验:根据客户需求提供个性化服务。 6. 成本效益高的运营:优化运营流程,降低成本。 7. 更好的合规性:确保金融活动符合法规要求。 8. 改进的风险管理:有效识别和管理风险。 9. 动态的预测和报告:及时准确地进行预测和报告。 金融服务公司利用大量历史金融数据微调大型语言模型,能够迅速回答各类金融问题。例如,经过特定数据训练的模型可回答公司产品相关问题,识别洗钱计划的交易等。在现有企业与初创公司的竞争中,现有企业因拥有专有金融数据访问权限在使用 AI 时有初始优势,但受准确性和隐私高标准限制;新进入者起初可能用公开金融数据训练模型,随后会生成自己的数据,并将 AI 作为新产品分销突破口。
2025-02-06
我想做一个关于类似塔罗牌或者欧卡牌的AI应用,请指点迷津
要开发一个类似塔罗牌或欧卡牌的 AI 应用,以下是一些建议: 1. 数据收集与准备:收集大量与塔罗牌和欧卡牌相关的解释、象征意义、牌面图案等数据,为 AI 模型的训练提供丰富的素材。 2. 模型选择与训练:可以考虑使用自然语言处理模型,如 Transformer 架构的模型,对收集到的数据进行训练,以让 AI 学习理解和生成与卡牌相关的解释和预测。 3. 交互设计:设计一个直观且吸引人的用户界面,方便用户与 AI 进行交互,例如选择牌、提出问题等。 4. 个性化体验:根据用户的历史交互和偏好,为用户提供个性化的卡牌解读和建议。 5. 准确性与可靠性:不断优化模型,提高解读的准确性和可靠性,避免给出模糊或误导性的回答。 6. 伦理和法律考虑:确保应用的使用符合伦理和法律规范,不涉及欺骗或有害的内容。 7. 测试与优化:在推出应用前,进行充分的测试,收集用户反馈,不断优化应用的性能和用户体验。
2025-02-06