Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是0基础,请你帮我规划学习AI知识的路径。

Answer

以下是为 0 基础的您规划的学习 AI 知识的路径:

一、了解 AI 基本概念 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。

二、开始 AI 学习之旅 在「入门:AI 学习路径」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。

三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。

四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。

五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

六、长期学习与成长 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

如果您的学习方向偏向技术研究:

  1. 数学基础:线性代数、概率论、优化理论等。
  2. 机器学习基础:监督学习、无监督学习、强化学习等。
  3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。
  4. 自然语言处理:语言模型、文本分类、机器翻译等。
  5. 计算机视觉:图像分类、目标检测、语义分割等。
  6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。
  7. 科研实践:论文阅读、模型实现、实验设计等。

如果您的学习方向偏向应用:

  1. 编程基础:Python、C++等。
  2. 机器学习基础:监督学习、无监督学习等。
  3. 深度学习框架:TensorFlow、PyTorch 等。
  4. 应用领域:自然语言处理、计算机视觉、推荐系统等。
  5. 数据处理:数据采集、清洗、特征工程等。
  6. 模型部署:模型优化、模型服务等。
  7. 行业实践:项目实战、案例分析等。

无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

Others are asking
什么是AI智能体
AI 智能体简单来说就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。它拥有各项能力,可以帮助人们做特定的事情。目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。体验过 GPT 或文心一言大模型的小伙伴应该知道,现在基本能用自然语言来编程,降低了编程门槛。但之前使用 GPT 或文心一言大模型时会出现胡编乱造、时效性差、无法满足个性化需求等问题,而 AI 智能体的出现正是解决这些问题的绝佳方式。AI 智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。所以 AI 智能体的出现就是结合自身的业务场景,针对自身需求,捏出自己的 AI 智能体来解决问题。 例如在社交方向,用户注册之后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入,这是一个有趣的场景。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有一个机会就是帮助 B 端商家搭建 Agent,类似 APP 时代专业做 APP 的。
2025-01-14
AI换背景
以下是关于 AI 换背景的相关内容: 使用 Segment Anything 进行人物背景更换: 有时需要更精确的蒙版,如人物眼睛或配饰等,可使用 Segment Anything 中的 GroundingDINO。启用 GroundingDINO 时,AI 会自动下载模型,若无法使用魔法,可去云盘下载并放到指定文件目录。在检测提示词中输入“eye”,可自动检测出眼睛部分并设置蒙版,还能通过预览箱体得到眼睛编号进行单一调整。上传生成的背景蒙版,选择大模型和正向提示词,如“简单背景、花、国画、工笔”,蒙版模式选择“重绘非蒙版内容”。若头发部分没抠好,可放入图生图中用 tile 模型细化,或在 PS 中用创成式填充修复。 使用 Photoshop 2023 Beta 进行背景更换: 大致使用下来,PS 凭空生成的图形质量可能不如 MJ 和 SD 的效果,但其擅长对原有图像扩充。利用“创成式填充”可去掉主体以外人物,在水面画选区添加渔船,选择头部区域添加棒球帽,选择草地部分创成式填充为沙滩,选择树添加椰树,调整颜色和构图并用创成式填充补全。但在换背景时可能生成质量不高的图,添加物品可能不匹配,“创成式填充”能快速提供素材,还需更多尝试和后期处理。 AE 套模版相关: 可在 ae 插件模版网站 1talk ae(https://www.talkae.com/)搜索安装插件。免费模版网站有 envato(带可商用版权有证书,可淘宝代下或包月),代下网站:https://sucai.ixling.com/login。付费可商用网站有 vj 师(https://www.vjshi.com/),视频背景可替换成 AI 生成的素材。
2025-01-14
AI提示词是什么
AI 提示词是用于对模型进行“编程”的指令或示例,通过提供提示词可以让模型完成各种任务,如内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 提示词的作用在于描绘您想要的画面、内容等。在不同的应用场景中,提示词的输入方式和要求有所不同。例如,在某些模型中,使用自然语言输入(如“一个长头发的金发女孩”),而在另一些模型中可能使用单个词组(如“女孩、金发、长头发”),并且支持中英文输入。 写好提示词需要注意以下几点: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等要素,比如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 2. 调整负面提示词,帮助 AI 理解不想生成的内容,如“不好的质量、低像素、模糊、水印”。 3. 利用“加权重”功能,让 AI 明白重点内容,权重数值越大越优先。 4. 还可以使用一些辅助功能,如翻译功能将提示词一键翻译成英文,或删除所有提示词等。 同时,对于英文文本,模型通过将文本分解为标记(Token)来理解和处理,1 个 Token 大约相当于 4 个字符或 0.75 个单词,输入和输出的文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,约为 2048 个 Token 或 1500 个单词)。
2025-01-14
AI提示词
以下是关于 AI 提示词的相关内容: 108 个舞蹈音乐提示词:这是由作者@mista.lewys@normalgoodz 发布在 SUNO.WIKI 的 PROMPTS BOOK,由格林翻译和扩展。它是一个全面的 108 条简洁提示列表,用于生成 AI 舞曲,每个提示的字符数在 117 到 120 之间,涵盖了各种舞曲子流派,如节奏感强的四四拍鼓点、电子低音、易于记住的合成器旋律、流行音乐风格的主唱、明亮的和弦音效、适合在夜店播放的混音、高潮部分等。每个提示精心制作,以有效地封装各种舞蹈音乐流派的具体特点和大气质量,同时确保适应不同的聆听环境。 SD 新手入门图文教程中的提示词模板相关资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-01-14
AI智慧体是什么
AI 智能体是随着 ChatGPT 与 AI 概念爆火而出现的新名词,简单理解就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,所以很多公司关注 AI 应用层的产品机会。 在 C 端,比如社交方向,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。 在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有一个机会就是帮助 B 端商家搭建智能体。 AI 智能体拥有各项能力,可以帮我们做特定的事情。它包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,能够完成比较复杂的工作。目前有不少大厂推出自己的 AI 智能体平台,像字节的扣子,阿里的魔搭社区等。
2025-01-14
怎么运用ai做小红书批量图片
以下是关于运用 AI 做小红书批量图片的一些方法和教程: 1. 利用 AI 批量生成、模仿和复刻《小林漫画》 扣子使用链接:https://www.coze.cn/s/iMCq73wp/ 批量生产图片的视频演示: 2. AI 应用到工作场景批量制作单词卡片 选用搞定设计来批量产图,利用其批量套版功能,步骤包括点击右上角三个点、选择批量套版、按照步骤依次点击、保留要替换的部分等。 使用 ChatGPT 辅助完成,一是生成对应的单词内容,二是把输出的内容整理好放入 Excel 文件中。 3. Recraft 制作小红书图片 视频教程:【【AI 绘画】新皇登基!Recraft 力压 SD、Flux、MJ!【新手教程】】 图文教程:打开网址 https://www.recraft.ai/invite/r8D2TaM6b2 ,选择 hard flash 并输入提示词。 还可以制作自己的胶片照片、多图拼接融合、原画转绘等效果,并上传制作效果。
2025-01-14
AI在师范生实践能力培养的路径
以下是关于 AI 在师范生实践能力培养的路径的相关内容: 对于师范生实践能力的培养,可参考以下路径: 1. 基础学习 了解 AI 基本概念:熟悉 AI 的术语、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 掌握编程语言:如 Python、JavaScript 等,这些是 AI 和机器学习的基础。学习编程语法、数据结构、算法等基础知识。 2. 学习资源与平台 在线教育平台:通过 Coursera、edX、Udacity 等平台上的课程,按照自己的节奏学习。 特定课程:特别推荐李宏毅老师的课程。 3. 深入学习与选择方向 依据兴趣选择特定模块,如自然语言处理、计算机视觉、推荐系统等。 掌握提示词技巧,上手容易且实用。 4. 实践与应用 参与实践项目:参加学校或社区组织的相关竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 5. 关注前沿动态 关注权威媒体和学者,了解 AI 技术的最新进展和发展方向。 6. 结合教育领域 学习 AI 在教育领域的应用案例,思考如何将 AI 技术应用于教学实践中。 总之,师范生可以从多个方面入手,全面系统地学习 AI 知识和技能,并将其与教育实践相结合,提升自身的实践能力。
2025-01-14
利用布鲁姆分类法,规划我的AI学习路径
以下是利用布鲁姆分类法为您规划的 AI 学习路径: 1. 记忆: 先从 AI 的历史、基本术语、重要人物、方法和原理等开始了解。 查看入门课程。 2. 分析: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 应用: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用来解决实际问题或提升效率。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-13
提示词工程的学习路径
以下是关于提示词工程的学习路径: 1. 基础概念学习 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,提示词在现代大型语言模型中极其重要,学习提示词运用还需: 1. 理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出质量。 2. 学习提示词的构建技巧 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”、“总结”、“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例 研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。 4. 实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。 在相关工作方面: 自动提示词工程方面,研究界开发了各种策略,用技术如增量编辑、强化学习、算法搜索等来自动化这一过程,也有利用大型语言模型本身进行自动提示词工程的工作。用于复杂推理任务的大型语言模型提示方面,提升大型语言模型在此方面的性能有引导模型产生中间推理步骤的提示方法和自我反思方法。提示词工程是一项复杂的语言任务,人类提示词工程师通常会检查当前提示词产生的失败案例,进行推理和假设,并撰写新的提示词。
2025-01-12
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-11
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-09
我该如何了解AI相关的知识 通往AHI之路有手机端吗
以下是一些了解 AI 相关知识的途径: 1. 访问《通往 AGI 之路》知识库,其提供了全面系统的 AI 学习路径,涵盖从常见名词到应用等各方面知识。您可以通过访问。 2. 关注相关的社交媒体账号,如公众号“通往 AGI 之路”、等,获取 AI 消息和知识普及视频。 3. 学习 AE 软件,了解其功能及与 AI 结合运用的方式,比如在 B 站找丰富的入门课程自学,或从包图网下载工程文件学习。 4. 阅读相关的研究报告,如艾瑞的《2024 年移动端 AI 应用场景研究报告》。 另外,《通往 AGI 之路》知识库目前没有手机端。
2025-01-14
AI入门知识学习
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果希望继续精进,对于不会代码的新手,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-01-14
这个通往AGI知识库有什么用?
“通往 AGI 之路”知识库具有以下重要作用: 1. 它是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,用户既是知识的消费者,也是知识的创作者。 2. 以“无弯路,全速前进”为目标,助力每一个怀揣 AI 梦想的人疾速前行。 3. 其生长得益于每一位用户的支持,通过大家的努力不断探寻 AGI 领域的无限可能。 4. 不仅是知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 5. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程,将文字化为视觉与听觉的现实。 6. 追踪 AI 领域最新的进展,时刻更新,让用户紧跟 AI 领域的步伐,每次访问都能有新的收获。 7. 无论用户是 AI 初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因 AI 而强大。 相关链接: https://waytoagi.com/(通往 AGI 之路) 即刻体验:https://waytoagi.com/
2025-01-13
我想建立一个知识库,有什么工具可以使用吗
以下是一些可用于建立知识库的工具及相关步骤: 使用 Dify 构建知识库的步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 使用扣子创建并上传文本内容到知识库的方式: 1. 在线数据: 自动采集方式:适用于内容量大,需要批量快速导入的场景。 在文本格式页签下,选择在线数据,然后单击下一步。 单击自动采集。 单击新增 URL。在弹出的页面完成以下操作: 输入要上传的网站地址。 选择是否需要定期同步网站内容,如果需要选择内容同步周期。 单击确认。 当上传完成后单击下一步。系统会自动根据网站的内容进行内容分片。 手动采集:适用于需要精准采集网页上指定内容的场景 安装扩展程序,详情请参考。 在文本格式页签下,选择在线数据,然后单击下一步。 点击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 使用 Coze 智能体创建知识库: 1. 手动清洗数据: 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。知识库的飞书在线文档,其中每个问题和答案以分割。选择飞书文档、自定义的自定义,输入,然后可编辑修改和删除。点击添加 Bot,添加好可以在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。将海报的内容训练的知识库里面。画小二这个课程 80 节课程,分为了 11 个章节,不能一股脑全部放进去训练。正确的方法是首先将 11 章的大的章节名称内容放进来,章节内详细内容依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-01-13
给大模型喂养的知识库哪里有
以下是一些获取给大模型喂养的知识库的途径和相关信息: 1. 在 Coze 中,大模型存在不准确和数据限制的问题,因此知识库的出现是为解决数据准确性。典型应用如客服系统,公司可将用户问题及答案记录在文档中作为知识库投喂给大模型,以实现更准确的回答。 2. 在阿里云百炼中,为 AI 助手增加私有知识的步骤包括:上传文件,在百炼控制台的中设置,打开知识检索增强开关、选择目标知识库并发布。 3. 在探讨大模型的 Brain 模块时,知识分为两大类,其中内置知识又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活的事实和逻辑规则,专业知识涉及特定领域的详细信息,语言知识包括语法规则、句型结构、语境含义等。
2025-01-12
给ai的知识库哪里有?
以下是一些关于 AI 的知识库: 通往 AGI 之路(WaytoAGI)是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,您既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 特点:由一群热爱 AI 的专家和爱好者共同建设,大家贡献并整合各种 AI 资源,使得大家都可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。提供了一系列开箱即用的工具,文生图、文生视频、文生语音等详尽的教程。追踪 AI 领域最新的进展,时刻更新,让您紧跟 AI 领域的步伐,每次访问都能有新的收获。 网址:https://waytoagi.com/ 即刻体验:https://waytoagi.com/ 相关渠道:公众号“通往 AGI 之路”、内置知识库 AI 助手、B 站(https://space.bilibili.com/259768893)、小红书(https://www.xiaohongshu.com/user/profile/6457d2e4000000001f030dbe)、X(https://twitter.com/WaytoAGI),知识库精选内容同步。
2025-01-12
请帮我做一个智能制造整体规划蓝图
很抱歉,目前知识库中没有关于智能制造整体规划蓝图的相关内容。但一般来说,智能制造整体规划蓝图需要考虑以下几个关键方面: 1. 生产流程优化:对现有生产流程进行详细分析,找出瓶颈和可优化的环节,引入自动化和智能化技术提高生产效率和质量。 2. 设备智能化升级:评估现有设备的智能化水平,逐步更新和升级设备,实现设备之间的互联互通和数据共享。 3. 数据管理与分析:建立完善的数据采集、存储和分析系统,挖掘数据中的潜在价值,为决策提供支持。 4. 人才培养与团队建设:培养具备智能制造知识和技能的人才,组建跨领域的团队来推动项目实施。 5. 供应链协同:加强与供应商和合作伙伴的协同,实现供应链的可视化和智能化管理,提高供应链的响应速度和灵活性。 6. 质量控制与追溯:建立智能化的质量检测和追溯体系,确保产品质量的稳定性和可追溯性。 以上只是一个初步的框架,具体的规划蓝图需要根据您企业的实际情况和需求进行深入调研和定制化设计。
2025-01-10
地方国民经济和社会发展规划、产业规划编制的Ai工具
以下是一些可以用于地方国民经济和社会发展规划、产业规划编制的 AI 工具: 在绘制逻辑视图、功能视图、部署视图方面: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现称为 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图。 在审核规划平面图方面: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有 AI 技术探索。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,实现建筑全寿命周期内信息集成与管理。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-01-10
开发软件 系统规划,哪个AI工具最适合
以下是一些适合用于绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑、功能和部署视图,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用,支持逻辑视图创建。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑、功能和部署视图等。 6. draw.io(现称为 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括逻辑和部署视图。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。 此外,对于软件项目经理,以下是一些适合的 AI 工具: 1. 项目管理和任务跟踪工具:如 Jira、Trello 等,已开始集成 AI 功能,辅助制定计划、分配任务、跟踪进度等。 2. 文档和协作工具:微软的 Copilot 可集成到 Office 套件中,为项目文档撰写、编辑等提供 AI 助手功能。一些云存储服务如 Google Drive 也开始提供 AI 驱动的文档管理和协作功能。 3. 风险管理和决策支持工具:一些 AI 工具可帮助识别和分析项目风险,并提供决策建议。 4. 沟通和协作工具:AI 助手可辅助进行团队沟通协调、客户关系维护等。 5. 创意生成工具:如文心一格、Vega AI 等,可以帮助快速生成创意图像素材。 随着 AI 技术的发展,越来越多的工具正在为软件项目经理提供智能化的辅助功能,涵盖项目管理的各个环节,有助于提高工作效率和决策能力。
2025-01-10
如何根据虑库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构呢
很抱歉,目前没有关于如何根据您提到的库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构的具体内容。但我可以为您提供一些一般性的思路和步骤: 首先,需要对库存水平、需求预测、补货成本和库存持有成本等数据进行详细的收集和分析。 对于线性规划方法,您可以建立一个目标函数,例如最小化总成本(包括补货成本和库存持有成本),同时满足库存水平和需求预测的约束条件。通过求解这个线性规划问题,得到最优的库存调整策略。 动态规划则是将问题分解为多个阶段,在每个阶段根据当前状态和决策选择来优化未来的结果。在库存调整中,可以根据不同时期的库存和需求情况,逐步做出最优决策。 随机优化适用于需求存在不确定性的情况。您可以建立概率模型来描述需求的不确定性,然后通过优化算法找到在不确定性条件下的最优库存策略。 不过,具体的应用和实现需要根据您的实际业务情况和数据特点进行深入研究和定制化的建模。
2025-01-06
帮我规划从0开始的AI学习路线
以下是为您规划的从 0 开始的 AI 学习路线: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、完整的学习路径 建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 七、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 八、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。
2024-12-30