Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

音频转文字

Answer

以下是关于音频转文字的相关信息:

  • 推荐使用 OpenAI 的 wishper 进行语音转文字,相关链接:https://huggingface.co/openai/whisper-large-v2 。还有一分钟搞定 23 分钟音频的相关项目:https://huggingface.co/spaces/sanchit-gandhi/whisper-jax ,此项目在 JAX 上运行,后端支持 TPU v4-8,与 A100 GPU 上的 PyTorch 相比,快 70 多倍,是目前最快的 Whisper API。
  • 语音转文本默认情况下 Whisper API 仅支持小于 25MB 的文件。若音频文件更长,需将其分成小于 25MB 的块或使用压缩后格式,避免在句子中间断开声音以防止丢失上下文字信息。可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对其可用性或安全性不作保证。
  • 可以使用提示来提高 Whisper API 生成的转录质量。例如,对于模型经常错误识别的特定单词或缩略语,用提示可改善;为保留分段文件的上下文,可用先前片段的转录引导模型;想避免转录中跳过标点符号,可用包含标点符号的简单提示;想保留填充词汇,可用包含它们的指示;某些语言有不同书写方式,通过添加指示可改进。
  • 虽然底层模型在 98 种不同语言上进行了培训,但只列出超过 50%单词错误率(WER)的标准行业基准测试所支持的语言,对于未列出的语言,模型也会返回输入结果但质量较低。
Content generated by AI large model, please carefully verify (powered by aily)

References

语音:语音转文字

语音转文字推荐OpenAI的wishperhttps://huggingface.co/openai/whisper-large-v2语音转文字:一分钟搞定的~23分钟的音频https://huggingface.co/spaces/sanchit-gandhi/whisper-jax这个项目在JAX上运行,后端支持TPU v4-8。与A100 GPU上的PyTorch相比,它要快70多倍,是目前最快的Whisper API。

语音转文本(Speech to text)

默认情况下Whisper API仅支持小于25 MB的文件。如果您有一个比这更长的音频文件,则需要将其分成每个小于25 MB的块或使用压缩后格式。为了获得最佳性能,请避免在句子中间断开声音以避免丢失一些上下文字信息。处理此问题的一种方法是使用PyDub开源Python软件包来拆分声频文件。OpenAI对于像PyDub这样的第三方软件的可用性或安全性不作任何保证。[heading2]提示[content]您可以使用提示来提高Whisper API生成的转录质量。模型将尝试匹配提示的风格,因此如果提示也使用大写和标点符号,则更有可能使用它们。但是,当前的提示系统比我们其他语言模型要受限得多,并且仅提供对生成音频的有限控制。以下是一些示例,说明如何在不同情况下使用提示:1.对于模型经常错误识别音频中特定单词或缩略语非常有帮助。例如,以下提示改善了DALL·E和GPT-3这些单词(以前被写成“GDP 3”和“DALI”)的转录。2.为了保留分段文件的上下文,请使用先前片段的转录来引导模型。这将使转录更准确,因为模型将利用先前音频中相关信息。该模型只会考虑最后224个标记并忽略之前任何内容。3.有时候,在转录中可能会跳过标点符号。您可以通过使用包含标点符号简单提示来避免这种情况:4.该模型还可能在音频中省略常见填充词汇。如果您想在您的转录中保留填充词汇,则可以使用包含它们的指示:5.某些语言可以用不同方式书写,例如简体或繁体中文。默认情况下,该模型可能无法始终按照所需书写风格进行处理。通过在首选书写风格上添加指示即可改进此问题.

语音转文本(Speech to text)

虽然底层模型是在98种不同的语言上进行了培训。但我们只列出了超过50%单词错误率(WER)的标准行业基准测试所支持的那些。该模型将返回未列出以上列表中的其他所有可能存在输入结果但质量会较低。

Others are asking
有什么工具可以把英文音频转为中文音频?
以下工具可以将英文音频转为中文音频:Whisper。它和 llama 类似,采用 make 命令编译,之后去 ggerganov/whisper.cpp下载量化好的模型,然后转换音频即可。目前 Whisper 只接受 wav 格式,可以用 ffmpeg 进行转化。输出的 srt 文件如下所示: |Size|Parameters|Englishonly model|Multilingual model|Required VRAM|Relative speed| ||||||| |tiny|39 M|tiny.en|tiny|~1 GB|~32x| |base|74 M|base.en|base|~1 GB|~16x| |small|244 M|small.en|small|~2 GB|~6x| |medium|769 M|medium.en|medium|~5 GB|~2x| |large|1550 M|N/A|large|~10 GB|1x| 一般来说,对于英文音频,small 模型通常就足够了,但如果是中文音频,最好使用最大的模型。
2025-02-02
介绍两款好用免费的文字转音频的AI工具
以下为您推荐两款好用免费的文字转音频的 AI 工具: 1. 飞书妙记(https://www.feishu.cn/product/minutes):飞书的办公套件之一。 2. 通义听悟(https://tingwu.aliyun.com/home):阿里推出的 AI 会议转录工具。 另外,您还可以在 WaytoAGI 的工具网站上查看更多相关工具:https://waytoagi.com/sites/category/50 。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-01
音频驱动视频
以下是关于音频驱动视频的相关信息: INFP:字节二元交互的新型音频驱动头部动画生成技术 用户输入一段对话音频,可以自动驱动两个数字人头像自然对话,不需要手动区分对话。AI 可以动态地在说话和聆听状态之间交替,实现自然的口型同步和头部与面部表情动作。它适应多种画风图像,支持歌唱、采访、对话(可以实现多 Agent 实时对话)等场景环境。 地址:https://grisoon.github.io/INFP/ LTX Studio:Face Expression 控制角色表情 LTX Studio 的新功能 Face Expression 可轻松完全控制角色的面部表情。可以从预设情绪中快速选择,在几秒钟内调整角色的表情,也可以使用自定义控件微调眼睛、嘴巴或眉毛等特定特征,打造所需的确切情感。 【TecCreative】帮助手册中的相关内容 音频驱动多场景数字人:支持音频和场景数字人一键合成,快速生成数字人口播视频。操作指引:上传音频链接——选择数字人角色和场景——选择输出类型——点击开始生成。音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。 谷歌 Generating audio for video 为了生成更高质量的音频,并增加引导模型生成特定声音的能力,在训练过程中添加了更多信息,包括人工智能生成的注释,其中包含声音的详细描述和口语对话誊本。通过对视频、音频和附加注释进行训练,技术可以学会将特定音频事件与各种视觉场景联系起来,同时对注释或文本中提供的信息做出响应。
2025-01-24
有哪些方法能识别中芬双语音频并转换为文字
目前在识别中芬双语音频并转换为文字方面,常见的方法包括利用专业的语音识别软件和服务。一些知名的语音识别技术提供商可能会有针对多语言音频识别的解决方案,但具体效果可能会受到音频质量、口音差异等因素的影响。此外,一些在线平台也可能提供相关的功能,但需要您进一步搜索和筛选以找到适合您需求的工具。
2025-01-22
音频转写
以下是一些人工智能音频转写相关的初创公司和免费的会议内容转文字工具: 人工智能音频转写初创公司: :为聋人和重听者提供专业和基于 AI 的字幕(转录和说话人识别)。 :专业的基于 AI 的转录和字幕。 :混合团队高效协作会议所需的一切。 :音频转录软件 从语音到文本到魔法。 :99%准确的字幕、转录和字幕服务。 :为语音不标准的人群提供的应用程序。 :通过 AI 语音识别实现更快速、更准确的语音应用。 :会议的 AI 助手。 :让孩子们的声音被听见的语音技术。 :使用语音识别自动将音频和视频转换为文本和字幕的 SaaS 解决方案。 :实时字幕记录面对面小组会议中的发言内容。 :理解每个声音的自主语音识别技术。 :支持 35 多种语言的自动转录。 :端到端的边缘语音 AI,设备上的语音识别。 :清晰自信地说英语。 :使用单一 API 为您的产品提供最先进的 AI 转录、翻译和音频智能。 :将您的音频或视频播客转化为转录、节目笔记、博客文章、视频片段和其他资产,以发布和推广您的节目。 免费的会议内容转文字工具(大部分有使用时间限制,超过免费时间需付费): 飞书妙记:,飞书的办公套件之一。 通义听悟:,阿里推出的 AI 会议转录工具。 讯飞听见:,讯飞旗下智慧办公服务平台。 Otter AI:,转录采访和会议纪要。 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-21
音频转文字
以下是关于音频转文字的相关信息: 语音转文字推荐 OpenAI 的 wishper,相关链接:https://huggingface.co/openai/whisperlargev2 。一分钟搞定 23 分钟的音频,相关链接:https://huggingface.co/spaces/sanchitgandhi/whisperjax 。这个项目在 JAX 上运行,后端支持 TPU v48,与 A100 GPU 上的 PyTorch 相比,它要快 70 多倍,是目前最快的 Whisper API。 对于更长输入:默认情况下 Whisper API 仅支持小于 25MB 的文件。如果音频文件更长,需要将其分成每个小于 25MB 的块或使用压缩后格式。为避免丢失上下文字信息,应避免在句子中间断开声音。处理此问题可使用 PyDub 开源 Python 软件包来拆分声频文件,但 OpenAI 对于像 PyDub 这样的第三方软件的可用性或安全性不作任何保证。 提示方面:可以使用提示来提高 Whisper API 生成的转录质量。模型将尝试匹配提示的风格,当前的提示系统比其他语言模型受限得多,仅提供对生成音频的有限控制。示例包括改善特定单词或缩略语的识别、利用先前片段的转录保留分段文件的上下文、避免标点符号的跳过、保留填充词汇、处理不同书写风格等。 支持的语言:虽然底层模型在 98 种不同的语言上进行了培训,但只列出了超过 50%单词错误率(WER)的标准行业基准测试所支持的语言,对于未列出的语言,模型也会返回输入结果但质量较低。
2025-01-21
文字生成视频的AI
以下是一些文字生成视频的 AI 产品及相关信息: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,支持视频编辑,目前内测免费,生成服务托管在 discord 中。 功能:直接发送指令或上传图片生成 3 秒动态视频。 加入方式:在浏览器中打开链接 https://discord.gg/dmtmQVKEgt 点击加入邀请。在“generate”子区输入指令生成,如/create prompt:future war,4Kar 16:9 按 Enter 发送;或输入/create 后在弹出的 prompt 文本框内上传本地图片生成对应指令动态效果。 2. SVD:Stable Diffusion 的插件,可在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 如果您想用 AI 把小说做成视频,通常包括文本分析、角色与场景生成、视频编辑与合成等步骤。以下是一些可以利用的工具及网址: 1. Stable Diffusion(SD):AI 图像生成模型,基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-01
提取视频中的文字
以下是关于提取视频中文字的相关内容: 视频会根据画面匹配生成音乐,音乐和视频还能卡点,视频里的文字也可以识别并转化为歌词。 对于 B 站视频,若有字幕,可通过安装油猴脚本获取字幕,选择多种字幕格式,将字文字内容全选复制发送给 GPTs 即可进行总结。 制作视频时,需要先准备一段视频中播放的内容文字,例如产品介绍、课程讲解、游戏攻略等,也可利用 AI 生成。使用剪映 App 进行处理,选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号添加文字内容轨道,替换默认文本内容,为数字人提供语音播放及生成相应口型。
2025-02-01
识别图片文字
以下是关于识别图片文字的方法: 1. 图像预处理: 图像去噪:使用去噪算法(如高斯滤波、中值滤波)去除图像中的噪声。 图像增强:通过增强算法(如直方图均衡化、对比度增强)提升图像的清晰度和对比度。 2. 图像分割:使用图像分割算法将试卷图像中的书写笔迹和背景分离。常用的分割算法包括阈值分割、边缘检测和基于区域的分割方法。 3. 文字检测:在分割后的图像中,使用文字检测算法(如基于深度学习的文本检测模型)识别出试卷上的文字区域。 4. 文字识别:对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据。常用的文字识别技术包括基于深度学习的端到端文本识别模型和传统的 OCR(Optical Character Recognition)技术。 5. 后处理:根据需求进行后处理,如去除残余的噪点、填补文字区域的空白等。 6. 机器学习模型训练(可选):如有足够的数据,可以采用机器学习技术训练模型,通过学习样本中的书写笔迹特征来自动去除试卷上的笔迹。 7. 优化算法:对整个处理流程进行优化,提高处理速度和准确度。可以采用并行计算、硬件加速等方法提升算法的效率。 8. 移动端集成:将设计好的算法和模型集成到移动应用程序中,以实现试卷拍照去除书写笔迹的功能。可以使用移动端开发框架(如 iOS 的 Core ML、Android 的 TensorFlow Lite)来实现模型的部署和调用。 此外,关于 GPT 的 OCR 识别问题及解决方案: 问题:开启代码执行功能时,GPT 会尝试用代码完成 OCR,导致无法正确识别图片文字。 解决方案: 如果是自定义 GPT,关闭 Code Interpreter。 无法关闭时,提问时明确说明“不要执行代码,请用自身多模态能力识别文字”。 直接使用 ChatGPT,而非 GPT。 关于 Glif 的使用: 首先确认 glif 的入口参数,设计输入项,如宠物的性别、语言、用户提供的一张宠物照片,并分别新增相应的节点。 接下来将图片内容识别出来,有两种选择:使用 Image to Text 节点或 GPTVision 的多模态能力。 由于识别图的内容可能混乱,可通过大模型做清理,新增一个 Text Generator(LLM)节点。
2025-02-01
哪些可以将CAD建筑平面图通过语言文字生成室内效果图的AI软件
以下是一些可以将 CAD 建筑平面图通过语言文字生成室内效果图的 AI 软件: 1. HDAidMaster:这是一款云端工具,在建筑设计、室内设计和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 2. Maket.ai:主要面向住宅行业,在户型设计和室内软装设计方面有 AI 技术探索,能根据输入的房间面积需求和土地约束自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束生成的设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内的信息集成,实现数据汇总与管理。 此外,还有 TexttoCAD 软件,支持通过文本生成 CAD 模型,UI 开源,但模型需付费。其官网为 。 但每个工具都有其特定的应用场景和功能,建议您根据自己的具体需求来选择合适的工具。
2025-01-29
文字可视化
以下是关于文字可视化及移动端图片视觉处理的相关内容: 文字可视化: 从文字生成图片以及遮罩,支持多种调整和设置,包括字间距、行间距、横排竖排调整、文字随机变化(大小和位置)等。节点选项说明如下: `size_as`:输入图像或遮罩,将按其尺寸生成输出图像和遮罩,此输入优先级高于`width`和`height`。 `font_file`:列出`font`文件夹中可用的字体文件列表,选中的字体用于生成图像。 `spacing`:字间距,以像素为单位。 `leading`:行间距,以像素为单位。 `horizontal_border`:侧边边距,数值为百分比,横排时为左侧边距,竖排时为右侧边距。 `vertical_border`:顶部边距,数值为百分比。 `scale`:文字总体大小,以百分比表示,可整体放大或缩小文字。 `variation_range`:字符随机变化范围,大于 0 时产生大小和位置随机变化,数值越大变化幅度越大。 `variation_seed`:随机变化的种子,固定此数值可使每次单个文字变化不变。 `layout`:文字排版,有横排和竖排可选。 `width`:画面宽度,若有`size_as`输入将被忽略。 `height`:画面高度,若有`size_as`输入将被忽略。 `text_color`:文字颜色。 `background_color`:背景颜色。 移动端图片视觉处理: 在试卷拍照去除书写笔迹方面,可采用图像处理和机器学习技术结合的方法,具体如下: 1. 图像预处理: 图像去噪:使用去噪算法(如高斯滤波、中值滤波)去除噪声。 图像增强:通过增强算法(如直方图均衡化、对比度增强)提升清晰度和对比度。 2. 图像分割:使用图像分割算法(如阈值分割、边缘检测、基于区域的分割方法)将书写笔迹和背景分离。 3. 文字检测:在分割后的图像中,使用文字检测算法(如基于深度学习的文本检测模型)识别文字区域。 4. 文字识别:对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据,常用技术包括基于深度学习的端到端文本识别模型和传统的 OCR 技术。 5. 后处理:根据需求进行后处理,如去除残余噪点、填补文字区域空白等。 6. 机器学习模型训练(可选):若有足够数据,采用机器学习技术训练模型,学习书写笔迹特征以自动去除笔迹。 7. 优化算法:对整个处理流程进行优化,提高处理速度和准确度,可采用并行计算、硬件加速等方法。 8. 移动端集成:将算法和模型集成到移动应用程序中,实现试卷拍照去除书写笔迹功能,可使用移动端开发框架(如 iOS 的 Core ML、Android 的 TensorFlow Lite)进行部署和调用。
2025-01-27