Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是大模型

Answer

大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。

大模型的训练和使用过程可以用“上学参加工作”来类比:

  1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。
  2. 确定教材:大模型需要大量的数据量,几千亿序列(Token)的输入基本是标配。
  3. 找老师:即选择合适的算法讲述“书本”中的内容,让大模型更好理解Token之间的关系。
  4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。

在LLM中,Token被视为模型处理和生成的文本单位,会被分割并生成词汇表,数字化便于计算机处理。为让计算机理解Token之间的联系,还需把Token表示成稠密矩阵向量,这个过程称为embedding,常见算法有基于统计的Word2Vec、GloVe,基于深度网络的CNN、RNN/LSTM,基于神经网络的BERT、Doc2Vec等。以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。

大模型的“大”指用于表达token之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数。

所谓的大模型,简而言之,是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂的任务。大模型强大的原因在于庞大的参数数量和大量的数据。这些参数帮助模型更深入地理解和生成数据,大量的数据是大模型学习的基础,使其能够掌握丰富的知识和技能。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

十七问解读生成式人工智能

GPT是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个GPT由OpenAI于2018年推出。GPT模型是基于Transformer模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。截至2023年,大多数LLM都具备这些特征,并广泛被称为GPT。而所谓的生成式预训练,其实是机器学习领域一个由来已久的概念。但是,直到2017年Google推出了Transformer模型,我们才见到了如BERT(2018年发布)和XLNet(2019年发布)这样的大型语言模型的诞生。这些模型都是基于预训练的转换器,但它们并不是为生成文本而设计,而是作为“仅编码器”使用。2018年,OpenAI发表了一篇名为《通过生成式预训练提高语言理解能力》的文章,首次介绍了基于转换器的生成式预训练模型(GPT)系统,即我们所说的“GPT-1”。[heading1]问题六、大模型是什么东西?[content]所谓的大模型,简而言之,就是那些拥有庞大参数数量的模型。它们通过处理和理解海量数据,能够胜任一系列复杂的任务。那么,为何将这些模型称作“大”模型呢?原因在于它们的规模之大,通常包含从数十亿到数千亿的参数。这些庞大的参数集合赋予了模型强大的学习和记忆能力,使其在处理各种任务时表现出色。我们可以从两个方面来进一步解读大模型的特点:1.大模型之所以强大,一个重要原因在于它们庞大的参数数量。这些参数,或者说“权重”,是模型在学习过程中不断调整的核心,它们帮助模型更深入地理解和生成数据。2.大模型的训练离不开大量的数据。无论是文本、图像还是音频数据,都是大模型学习的基础。通过对这些数据的深入学习,模型能够掌握丰富的知识和技能。

Others are asking
写小说,推荐哪个开源模型呢?
以下是为您推荐的一些可用于写小说的开源模型及相关资源: 1. Kolors 开源模型: 相关教学视频: ,作者为吴杨峰。 ,作者为楚门的 AI 世界。 。 ,作者为不懂技术就用 AI 呀。 2. 辅助创作的 AI 工具: ChatGPT:擅长构思。 Claude:文笔好于 ChatGPT。 彩云小梦、Kimi、MidReal 等。 此外,还有一些关于用 AI 写小说的相关知识: 1. 让 AI 写小说存在一些问题,如上下文长度限制、容易忘记要求、文笔简略、一致性难以保证等。 2. 对于某些问题,如“保持创意简洁”“危机快速来临”,AI 不容易犯,但对叙述方式比较敏感,写 prompt 时要保持用词一致。 3. AI 只是辅助创作,最后仍需人工加工和修改以满足读者要求。
2025-01-02
你用的什么大模型
以下是关于大模型的相关信息: 在 SD 应用中,选择 ControlNet 模型时,将字体参考图放进 ControlNet 中,预处理器可选择 invert 等,注意控制类型的选择,选好预处理可点击预览按钮,然后选择 Control 模型,如 Depth 景深模型或 Scribble 涂鸦模型等,选择好后记得启用 ControlNet。选择生图大模型时,大模型决定最终风格,如生成真实场景下的字体,可选择如 lofi.v2 等大模型,不同大模型对 ControlNet 模型的控制力有不同适应度,需微调参数。 常用的模型网站有:。下载模型后,大模型(Ckpt)放入 models\\Stablediffusion,VAE 模型放置在 models\\Stablediffusion 或 models\\VAE 目录,Lora/LoHA/LoCon 模型放入 extensions\\sdwebuiadditionalnetworks\\models\\lora 或 models/Lora 目录,Embedding 模型放入 embeddings 目录。 大模型指的是用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。常见的将 Token 表示成稠密矩阵向量的算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。
2025-01-02
为什么有的大模型不能和lora一起用
大模型不能和 Lora 一起用可能有以下原因: 1. 不配套:一般情况下,只有配套的大模型和 Lora 一起使用才能达到 Lora 的最佳效果。不同的大模型和 Lora 可能在特征、参数等方面不匹配。 2. 触发条件:除了加载 Lora 外,还需要加入一些特定的触发词才能保证其正常使用,如果没有满足触发条件,可能无法协同工作。 同时,模型的类型和安装位置也很重要: 1. 大模型(Ckpt)应放入 models\\Stablediffusion 目录。 2. Lora/LoHA/LoCon 模型应放入 extensions\\sdwebuiadditionalnetworks\\models\\lora 或 models/Lora 目录。 使用 Lora 时要注意作者使用的大模型,也不排除一些 Lora 和其他大模型会产生奇妙的效果。此外,文件后缀名相似,难以通过后缀名区分文件类型,可通过特定网站检测。
2025-01-02
多模态大模型是什么意思
多模态大模型(MLLM)是一种在统一框架下,集成多种不同类型数据处理能力的深度学习模型,这些数据包括文本、图像、音频和视频等。通过整合多样化的数据,MLLM 能够更全面地理解和解释现实世界中的复杂信息,在面对复杂任务时表现出更高的准确性和鲁棒性。其架构通常包括一个编码器、一个连接器和一个 LLM,还可选择性地在 LLM 上附加一个生成器以生成除文本之外的更多模态。连接器大致可分为基于投影的、基于查询的和基于融合的三类。 Google 的人工智能多模态大模型叫 Gemini,是 Google DeepMind 团队开发的。Gemini 不仅支持文本、图片等提示,还支持视频、音频和代码提示,能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。 学习多模态大模型很有必要,因为它可以从图像中提取文本,理解图像或视频中发生的事情,识别物体、场景甚至情绪。例如,有人想为猫买新衣服,可给模型提供猫的图片和文本提示,模型会给出适合猫的衣服建议;在学生解决物理问题的例子中,模型能根据包含问题和答案的图像以及文本提示,进行推理并判断答案是否正确。输入可以是文本、图像、音频的混合,顺序很重要。
2025-01-02
大模型是否包括文生图文生视频这些
大模型包括文生图、图生图、图生视频、文生视频等多模态内容。多模态模型的底层逻辑通常先从生图片这一源头开始,因为视频也是由若干帧的图片组成。例如,目前比较火的 StableDiffusion 所使用的扩散模型,其训练过程是先把海量带有标注文字描述的图片逐渐加满噪点,模型学习每一步图片向量值和文字向量值的数据分布演变规律,沉淀下来完成训练。后续输入文字后,模型根据输入文字转化的向量指导充满噪点的图片减噪点生成最终图片。 腾讯的混元 AI 视频模型目前只支持文生视频,但图生视频也即将上线。 唱衰大模型的人认为大模型仅能实现如 ChatBox、文生图、图生图、生视频、生音频等功能,难以找到可商用场景,且存在算力成本等问题。但实际上,关于算力成本已有许多解决方案,而且大模型的应用并非仅限于上述提到的功能。
2025-01-02
端到端 模型的应用场景
端到端模型的应用场景包括以下方面: 硬件领域,如机器人、耳机等。 处理垃圾情绪。 音视频应用,效果良好。 手机侧,作为原生 AI OS 的未来重点方向,有望成为新的交互入口,除生成内容外,还能调用手机上的各类应用程序,方便用户完成各类操作。 自动驾驶,输入为视觉,输出为油门、刹车、方向盘等。 物体分拣,输入包括视觉、指令、数值传感器,输出为抓取目标物体并放置到目标位置。
2025-01-02