大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。
大模型的训练和使用过程可以用“上学参加工作”来类比:
在LLM中,Token被视为模型处理和生成的文本单位,会被分割并生成词汇表,数字化便于计算机处理。为让计算机理解Token之间的联系,还需把Token表示成稠密矩阵向量,这个过程称为embedding,常见算法有基于统计的Word2Vec、GloVe,基于深度网络的CNN、RNN/LSTM,基于神经网络的BERT、Doc2Vec等。以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。
大模型的“大”指用于表达token之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数。
所谓的大模型,简而言之,是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂的任务。大模型强大的原因在于庞大的参数数量和大量的数据。这些参数帮助模型更深入地理解和生成数据,大量的数据是大模型学习的基础,使其能够掌握丰富的知识和技能。
通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|
数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")
GPT是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个GPT由OpenAI于2018年推出。GPT模型是基于Transformer模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。截至2023年,大多数LLM都具备这些特征,并广泛被称为GPT。而所谓的生成式预训练,其实是机器学习领域一个由来已久的概念。但是,直到2017年Google推出了Transformer模型,我们才见到了如BERT(2018年发布)和XLNet(2019年发布)这样的大型语言模型的诞生。这些模型都是基于预训练的转换器,但它们并不是为生成文本而设计,而是作为“仅编码器”使用。2018年,OpenAI发表了一篇名为《通过生成式预训练提高语言理解能力》的文章,首次介绍了基于转换器的生成式预训练模型(GPT)系统,即我们所说的“GPT-1”。[heading1]问题六、大模型是什么东西?[content]所谓的大模型,简而言之,就是那些拥有庞大参数数量的模型。它们通过处理和理解海量数据,能够胜任一系列复杂的任务。那么,为何将这些模型称作“大”模型呢?原因在于它们的规模之大,通常包含从数十亿到数千亿的参数。这些庞大的参数集合赋予了模型强大的学习和记忆能力,使其在处理各种任务时表现出色。我们可以从两个方面来进一步解读大模型的特点:1.大模型之所以强大,一个重要原因在于它们庞大的参数数量。这些参数,或者说“权重”,是模型在学习过程中不断调整的核心,它们帮助模型更深入地理解和生成数据。2.大模型的训练离不开大量的数据。无论是文本、图像还是音频数据,都是大模型学习的基础。通过对这些数据的深入学习,模型能够掌握丰富的知识和技能。