Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

如何学习AI

Answer

以下是新手学习 AI 的方法和建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

对于中学生学习 AI,建议如下:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。
  2. 尝试使用 AI 工具和平台:
    • 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

Others are asking
AIGC的技术原理
AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的技术原理如下: 生成式人工智能(GenAI):基于深度学习技术和机器学习算法,从已有数据中学习并生成新的数据或内容。通过大规模数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。典型的 GenAI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 机器学习:让机器自动从资料中找到公式。 深度学习:一种更厉害的手段,类神经网络,具有非常大量参数的函数。 大语言模型:是一类具有大量参数的“深度学习”模型。 AIGC 工具通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容,从而能够生成包括文本、图像、音频、视频和三维模型等多种形式的内容。
2024-12-24
如何学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等 AI 生成工具。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-24
视频去重AI软件哪个好用
以下是一些好用的视频去重 AI 软件: Sora:相关教程可参考 https://waytoagi.feishu.cn/wiki/S5zGwt5JHiezbgk5YGic0408nBc Hedra:工具教程见 https://waytoagi.feishu.cn/wiki/PvBwwvN36iFob7kqZktcCzZFnxd 视频转绘:应用教程 https://waytoagi.feishu.cn/wiki/ZjKpwSd5hiy6ZhkiBVHcOBb6n9r 视频拆解:应用教程 https://waytoagi.feishu.cn/wiki/WeKMwHRTmiVpYjkVdYpcFjqun6b 图片精修:应用教程 https://waytoagi.feishu.cn/wiki/CfJLwknV1i8nyRkPaArcslWrnle 此外,还有以下几个视频 AIGC 工具: Opusclip:可将长视频剪成短视频 Raskai:能将短视频素材直接翻译至多语种 invideoAI:输入想法后自动生成脚本和分镜描述,进而生成视频,再人工二编合成长视频 descript:屏幕/播客录制后以 PPT 方式做视频 veed.io:自动翻译自动字幕 clipchamp:微软的 AI 版剪映 typeframes:类似 invideoAI,内容呈现中文本主体比重更多 google vids 对于 Video Battle 视频挑战赛Farewell 送别,参与方式中的视频工具建议及云端 Comfyui 出图+AI 视频软件相关内容,您可参考: https://waytoagi.feishu.cn/wi 工作流: 步骤: 打开链接的工作流:https://www.esheep.com/app/5977,点击查看工作流,会出现登录或注册界面正常注册即可。如果已经登录会自动出现下面的界面。 步骤 1:红色框选择生成图片的大模型,绿色框添加提示词,蓝色框填写反向提示词 步骤 2:红色框设置大小确保是 16:9 的比例,绿色框修改参数,参数不理解的话保持默认即可。 步骤 3:红色框上传深度图 步骤 4:点击立即生成,最下面就会出现图片,在生成历史中下载图片即可。
2024-12-24
旧照片翻新用哪一款ai工具?
以下是一些可用于旧照片翻新的 AI 工具: 1. Stable Diffusion:可以通过设置颜色提示词和使用 cutoff 插件来控制颜色,使老照片上色效果更好。对于复杂的照片,可能需要逐个上色并用 PS 进行融合。相关文章: 2. Dreamina 即梦: 网址:https://dreamina.jianying.com/aitool/home?subTab= 优点:不需要🪜,每天有免费额度;注册可用抖音号或手机号,耗时约 5 分钟。 3. Sora: 网址:https://openai.com/sora 优点:发布的成果好,集成在 openai 一套里可用。 限制:需要🪜,需要 gmail 注册,需要订阅后才能使用,耗时 30 60 分钟,价格为 GPT 4 20$一个月。
2024-12-24
旧照片翻新用哪一款ai工具?
以下是一些可用于旧照片翻新的 AI 工具: 1. Stable Diffusion:可以用 AI 给老照片上色,但可能存在颜色提示词相互污染、背景不统一等问题。为解决这些问题,可启用 cutoff 插件进行控制。相关文章可参考。此外,还能将低像素照片变得更高清。 2. Dreamina 即梦: 网址:https://dreamina.jianying.com/aitool/home?subTab= 优点:不需要🪜,每天有免费额度。 注册:抖音号或手机号。 时间:5min。 3. Sora: 网址:https://openai.com/sora 优点:发布的成果好,集成在 openai 一套里可用。 限制:需要🪜,需要 gmail 注册,需要订阅后才能使用。 时间:30 60min。 价格:GPT 4 20$一个月。
2024-12-24
我面临退休,想使用ai开展第二职业,该如何规划实施?
以下是为您规划使用 AI 开展第二职业的一些建议: 1. 深入了解 AI 领域:明确自己的兴趣点,比如是对 AI 提示词、AI 绘画、AI 智能体还是其他方面感兴趣。 2. 评估自身技能:确定自己现有的技能与 AI 领域的结合点,以及还需要提升哪些技能。 3. 学习与提升:根据职业目标,获取个性化的学习建议和资源,提升在 AI 领域的专业技能。 4. 选择研究课题:有意识地选择有潜力和市场需求的研究方向。 5. 宣传工作成果:让更多人了解您在 AI 领域的工作和成果。 6. 合作与交流:与能力强且您钦佩的人合作,学习他们的研究品味和思考方式。 7. 关注行业趋势:了解 AI 领域的最新发展和未来方向,比如更事实性不会产生幻觉的语言模型、可以使用工具与世界进行交互的多模态模型等。 8. 制定职业规划:明确短期和长期的职业目标,制定详细的发展计划。 同时,您可以利用一些职业规划服务产品,比如: 1. 对于学生和应届毕业生,可以通过产品了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适职业路径并制定规划,根据职业目标获取个性化学习建议和资源提升技能。 2. 对于职场新人和职业转换者,可根据自身职业目标和市场需求制定发展计划,明确短期和长期目标,获取职业转型支持和必要技能培训资源。 3. 对于企业,可利用产品评估应聘者 AI 技能水平,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 4. 对于教育机构,可将产品作为学生职业指导一部分,帮助了解 AI 领域职业机会和发展路径,优化课程设置提供针对性培训。 5. 对于职业咨询师,可将产品作为辅助工具为客户提供更精准规划建议和技能评估,基于产品数据提供更全面前瞻性指导。
2024-12-24
stable difusion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,了解提示词相关指南,研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境:安装 Git 用于克隆源代码,安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项,安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码:打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git,将源代码克隆到本地目录。 3. 运行安装脚本:进入 stablediffusionwebui 目录,运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境,等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面:复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作:了解 Web UI 的各种设置选项,如模型、采样器、采样步数等,尝试生成图像,观察不同参数对结果的影响,学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能:了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等,学习如何导入自定义模型、VAE、embedding 等文件,掌握图像管理、任务管理等技巧,提高工作效率。 Stable Diffusion 软件原理傻瓜级理解: Stable Diffusion 的工作原理可以这样理解:好比学习画画,比如学梵高的风格,要先看梵高的画并临摹。AI 绘画也是类似逻辑,人们把成千上万美术风格的作品练成一个模型放在 AI 里,AI 就能依照这个模型画出类似风格的作品。想要画出符合心意的作品,首先要选对合适的大模型。大模型的下载,可以去 C 站(https://civitai.com/),有真实系的、二次元的、游戏 CG 风的等等,但需要科学上网。
2024-12-24
stable difudion学习
以下是关于学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 学习 Stable Diffusion 的 Web UI: 学习 Stable Diffusion Web UI 可以按照以下步骤进行: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。 等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开,即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 安装 Stable Diffusion 的电脑配置要求: 1. 查看电脑配置: 对于 Windows 系统,可以查看专用 GPU 内存。 4GB:说明电脑勉强可以跑动 SD,出图的时间会比较长。 6GB:出一张图的时间是 20 50 秒,SD 的大部分功能都可以使用。 8GB:5 20 秒可以出一张图,基本上 SD 的所有功能都对你开放。 2. Mac 系统:可以参考下面的视频进行一键安装:https://www.bilibili.com/video/BV1Kh4y1W7Vg/?spm_id_from=333.788&vd_source=6f836e2ab17b1bdb4fc5ea98f38df761
2024-12-24
有关AI的学习路径
以下是为您提供的 AI 学习路径: 新手学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 AI 与宠物结合的学习路径: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 偏向技术研究方向的学习路径: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 偏向应用方向的学习路径: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2024-12-24
我想系统性的,由浅入深的学习AI知识,请给出我一个规划
以下是为您制定的由浅入深系统性学习 AI 知识的规划: 一、基础阶段 1. 编程语言学习 选择 Python 或 JavaScript 等编程语言,学习编程语法、数据结构和算法等基础知识,为后续的 AI 学习打下坚实基础。 2. 了解 AI 基本概念 阅读相关入门文章,熟悉 AI 的术语、基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 二、入门阶段 1. 学习路径引导 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 2. 体验 AI 工具和平台 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 三、深入学习阶段 1. 选择感兴趣的模块 AI 领域广泛,包括图像、音乐、视频等。根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且实用。 2. 学习 AI 基础知识 了解 AI 的发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 四、实践阶段 1. 参与实践项目 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 2. 分享与交流 在知识库分享自己实践后的作品和经验,与他人交流学习。 五、前沿关注阶段 1. 关注动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,按照以上规划,从编程基础、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,您将逐步深入 AI 领域,为未来的发展做好准备。
2024-12-24
深度学习是什么意思?
深度学习是一种源于新方法和策略的技术,旨在通过克服梯度消失问题来生成深层的非线性特征层次,从而能够训练具有数十层非线性层次特征的体系结构。 深度学习不仅与学习深度非线性层次特征有关,还与学习检测序列数据中非常长的非线性时间依赖性有关。例如,长短时记忆循环神经网络允许网络收集过去几百个时间步的活动,从而做出准确的预测。 深度学习是一种参照人脑神经网络和神经元的方法,由于具有很多层所以称为“深度”。神经网络可以用于监督学习、无监督学习、强化学习等。 自 2010 年早期,结合 GPUs 和激活函数提供更好的梯度流,足以在没有重大困难的情况下训练深层结构,人们对深度学习的兴趣与日俱增。自 2013 年以来,长短时记忆网络的使用量迅速增长,与卷积网络一起构成了深度学习的两大成功案例之一。
2024-12-24