AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。例如,它可以做任何人类能够做的事情。目前,AI 分为 ANI 和 AGI,ANI 得到了巨大发展,但 AGI 还没有取得巨大进展。ANI 是弱人工智能,只能做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。在 2000 年代初,“通用人工智能”这个名词流行起来,以强调从“狭义 AI”到更广泛的智能概念的追求。但需要注意的是,目前并没有一个被广泛接受的 AGI 定义。
作者:小鱼干了发布时间:2023-06-29 23:45原文地址:https://mp.weixin.qq.com/s/ycDWZ8W46DrsyeNShC1-wA微信扫一扫关注该公众号[heading1]先热个身[content]chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!
AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。
Introduction智能是一个多方面而难以捉摸的概念,长期以来一直挑战着心理学家、哲学家和计算机科学家。1994年,一组52名心理学家签署了一份有关智能科学的广泛定义的社论,试图捕捉其本质。共识小组将智能定义为一种非常普遍的心理能力,其中包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等能力。这个定义意味着智能不仅限于特定领域或任务,而是涵盖了广泛的认知技能和能力——建立一个能够展示1994年共识定义所捕捉到的通用智能的人工系统是人工智能研究的一个长期而宏伟的目标。在早期的著作中,现代人工智能(AI)研究的创始人提出了理解智能的一系列宏伟目标。几十年来,AI研究人员一直在追求智能的原则,包括推理的普适机制(例如[NSS59],[LBFL93])以及构建包含大量常识知识的知识库[Len95]。然而,最近的许多AI研究进展可以描述为「狭义地关注明确定义的任务和挑战」,例如下围棋,这些任务分别于1996年和2016年被AI系统掌握。在1990年代末至2000年代,越来越多的人呼吁开发更普适的AI系统(例如[SBD+96]),并且该领域的学者试图确定可能构成更普遍智能系统的原则(例如[Leg08,GHT15])。名词「通用人工智能」(AGI)在2000年代初流行起来(见[Goe14]),以强调从「狭义AI」到更广泛的智能概念的追求,回应了早期AI研究的长期抱负和梦想。我们使用AGI来指代符合上述1994年定义所捕捉到的智能广泛能力的系统,其中包括了一个附加的要求,即这些能力在或超过人类水平。然而,我们注意到并没有一个被广泛接受的AGI定义,我们在结论部分讨论其他定义。