GPT 是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个 GPT 由 OpenAI 于 2018 年推出。GPT 模型是基于 Transformer 模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。
生成式预训练是机器学习领域由来已久的概念。2017 年 Google 推出 Transformer 模型后,出现了如 BERT 和 XLNet 这样的大型语言模型。2018 年,OpenAI 发表了名为《通过生成式预训练提高语言理解能力》的文章,首次介绍了基于转换器的生成式预训练模型(GPT)系统,即“GPT-1”。
生成式指的是大模型根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。例如,一开始给大模型一些提示词,如“How”,大模型会结合自身知识计算推理,输出“are”接在“How”后面,然后在已知“How are”的情况下,再次推理计算输出“You”,如此重复,直到计算出下一个词是“[end of text]”的概率最大,结束输出。
截至 2023 年,大多数 LLM 都具备这些特征,并广泛被称为 GPT。大模型通常拥有庞大的参数数量,通过处理和理解海量数据,能够胜任一系列复杂的任务。其强大的原因在于庞大的参数数量和大量的数据训练。
GPT是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个GPT由OpenAI于2018年推出。GPT模型是基于Transformer模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。截至2023年,大多数LLM都具备这些特征,并广泛被称为GPT。而所谓的生成式预训练,其实是机器学习领域一个由来已久的概念。但是,直到2017年Google推出了Transformer模型,我们才见到了如BERT(2018年发布)和XLNet(2019年发布)这样的大型语言模型的诞生。这些模型都是基于预训练的转换器,但它们并不是为生成文本而设计,而是作为“仅编码器”使用。2018年,OpenAI发表了一篇名为《通过生成式预训练提高语言理解能力》的文章,首次介绍了基于转换器的生成式预训练模型(GPT)系统,即我们所说的“GPT-1”。[heading1]问题六、大模型是什么东西?[content]所谓的大模型,简而言之,就是那些拥有庞大参数数量的模型。它们通过处理和理解海量数据,能够胜任一系列复杂的任务。那么,为何将这些模型称作“大”模型呢?原因在于它们的规模之大,通常包含从数十亿到数千亿的参数。这些庞大的参数集合赋予了模型强大的学习和记忆能力,使其在处理各种任务时表现出色。我们可以从两个方面来进一步解读大模型的特点:1.大模型之所以强大,一个重要原因在于它们庞大的参数数量。这些参数,或者说“权重”,是模型在学习过程中不断调整的核心,它们帮助模型更深入地理解和生成数据。2.大模型的训练离不开大量的数据。无论是文本、图像还是音频数据,都是大模型学习的基础。通过对这些数据的深入学习,模型能够掌握丰富的知识和技能。
大家玩GPT应该有一段时间了,我们都知道GPT的全称是“Generative Pre-trained Transformer“,前两个词比较好理解,Transformer是个相对专业的概念。这篇文章我们就主要讲一下Transformer的工作原理。下面的内容涉及一些线性代数和概率学知识,我在具体的计算过程里面有一些解释,大家也可以用AI工具针对性学习一下相关的概念,理解起来会容易一些。
总结一下,以上这段讨论,你要重点记住这句话:模仿人类大脑结构的AI,也自然而然的表现出人的特征,很多我们应对大模型回答不及预期的解决之道,也和人与人交流沟通的技巧如出一辙,息息相关。关于这一点,我们会在后续各种真实案例的分析拆解中再来讨论。GPT的全称是生成式预训练转换器模型(Generative Pre-trained Transformer),他的名字里就蕴含了大量重要的信息,接下来我们来聊聊GPT这三个字母的分别含义:图14 Generative Pre-trained Transformer生成式(Generative):所谓生成式,说的是大模型是根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。这一过程,像极了一个单字接龙的游戏,图15中给出了一个简单的例子做为说明:1.一开始我们给了大模型一些提示词Prompt,为了简化,在图中这个提示词只有一个单词:How;2.接下来,大模型会结合自己“大脑中存储的知识”进行计算推理,算出how后面接are这个单词的概率最大,于是输出are接在how后面;3.在已知how are的情况下,大模型再次推理计算,算出how are后面接you这个单词概率最大,于是输出you接在how are后面;4.不断重复上面步骤,每次大模型会多输出一个词(token),新的输出会和过去的输入一并成为新的输入,用来计算下一个词;5.直到计算出下一个词是[end of text]的概率最大,于是结束输出,回答结束([end of text]是一个特殊的token,用来终止对话输出)