直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何理解GPT

回答

GPT 是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个 GPT 由 OpenAI 于 2018 年推出。GPT 模型是基于 Transformer 模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。

生成式预训练是机器学习领域由来已久的概念。2017 年 Google 推出 Transformer 模型后,出现了如 BERT 和 XLNet 这样的大型语言模型。2018 年,OpenAI 发表了名为《通过生成式预训练提高语言理解能力》的文章,首次介绍了基于转换器的生成式预训练模型(GPT)系统,即“GPT-1”。

生成式指的是大模型根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。例如,一开始给大模型一些提示词,如“How”,大模型会结合自身知识计算推理,输出“are”接在“How”后面,然后在已知“How are”的情况下,再次推理计算输出“You”,如此重复,直到计算出下一个词是“[end of text]”的概率最大,结束输出。

截至 2023 年,大多数 LLM 都具备这些特征,并广泛被称为 GPT。大模型通常拥有庞大的参数数量,通过处理和理解海量数据,能够胜任一系列复杂的任务。其强大的原因在于庞大的参数数量和大量的数据训练。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

十七问解读生成式人工智能

GPT是“生成式预训练变换器”(Generative Pre-trained Transformer)的缩写,是一种大型语言模型(LLM),也是生成式人工智能的重要框架。首个GPT由OpenAI于2018年推出。GPT模型是基于Transformer模型的人工神经网络,在大型未标记文本数据集上进行预训练,并能够生成类似于人类自然语言的文本。截至2023年,大多数LLM都具备这些特征,并广泛被称为GPT。而所谓的生成式预训练,其实是机器学习领域一个由来已久的概念。但是,直到2017年Google推出了Transformer模型,我们才见到了如BERT(2018年发布)和XLNet(2019年发布)这样的大型语言模型的诞生。这些模型都是基于预训练的转换器,但它们并不是为生成文本而设计,而是作为“仅编码器”使用。2018年,OpenAI发表了一篇名为《通过生成式预训练提高语言理解能力》的文章,首次介绍了基于转换器的生成式预训练模型(GPT)系统,即我们所说的“GPT-1”。[heading1]问题六、大模型是什么东西?[content]所谓的大模型,简而言之,就是那些拥有庞大参数数量的模型。它们通过处理和理解海量数据,能够胜任一系列复杂的任务。那么,为何将这些模型称作“大”模型呢?原因在于它们的规模之大,通常包含从数十亿到数千亿的参数。这些庞大的参数集合赋予了模型强大的学习和记忆能力,使其在处理各种任务时表现出色。我们可以从两个方面来进一步解读大模型的特点:1.大模型之所以强大,一个重要原因在于它们庞大的参数数量。这些参数,或者说“权重”,是模型在学习过程中不断调整的核心,它们帮助模型更深入地理解和生成数据。2.大模型的训练离不开大量的数据。无论是文本、图像还是音频数据,都是大模型学习的基础。通过对这些数据的深入学习,模型能够掌握丰富的知识和技能。

机器学习-Transformer的基本工作原理

大家玩GPT应该有一段时间了,我们都知道GPT的全称是“Generative Pre-trained Transformer“,前两个词比较好理解,Transformer是个相对专业的概念。这篇文章我们就主要讲一下Transformer的工作原理。下面的内容涉及一些线性代数和概率学知识,我在具体的计算过程里面有一些解释,大家也可以用AI工具针对性学习一下相关的概念,理解起来会容易一些。

走入AI的世界

总结一下,以上这段讨论,你要重点记住这句话:模仿人类大脑结构的AI,也自然而然的表现出人的特征,很多我们应对大模型回答不及预期的解决之道,也和人与人交流沟通的技巧如出一辙,息息相关。关于这一点,我们会在后续各种真实案例的分析拆解中再来讨论。GPT的全称是生成式预训练转换器模型(Generative Pre-trained Transformer),他的名字里就蕴含了大量重要的信息,接下来我们来聊聊GPT这三个字母的分别含义:图14 Generative Pre-trained Transformer生成式(Generative):所谓生成式,说的是大模型是根据已有的输入为基础,不断计算生成下一个字词(token),从而逐字完成回答的过程。这一过程,像极了一个单字接龙的游戏,图15中给出了一个简单的例子做为说明:1.一开始我们给了大模型一些提示词Prompt,为了简化,在图中这个提示词只有一个单词:How;2.接下来,大模型会结合自己“大脑中存储的知识”进行计算推理,算出how后面接are这个单词的概率最大,于是输出are接在how后面;3.在已知how are的情况下,大模型再次推理计算,算出how are后面接you这个单词概率最大,于是输出you接在how are后面;4.不断重复上面步骤,每次大模型会多输出一个词(token),新的输出会和过去的输入一并成为新的输入,用来计算下一个词;5.直到计算出下一个词是[end of text]的概率最大,于是结束输出,回答结束([end of text]是一个特殊的token,用来终止对话输出)

其他人在问
chat gpt
ChatGPT 是通过从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络来生成类似的文本。其基本概念是让神经网络能够从提示开始,生成类似于训练内容的连贯文本。 ChatGPT 中的实际神经网络由大量简单元素组成,基本操作是为每个新单词生成输入并通过元素处理。但这个过程能产生出色的类似人类语言的文本,这表明人类语言及思维模式的结构比想象中更具规律性。 不过,ChatGPT 在训练和硬件方面与大脑存在差异,其策略可能效率较低,内部没有循环或重新计算数据,限制了计算能力。但目前看到它能做到的事情令人兴奋,也为更好理解人类语言和思维过程提供了动力。 ChatGPT 基于 OpenAI 最先进的语言模型 gpt3.5turbo。使用 OpenAI 的 API,可利用 gpt3.5turbo 构建多种应用,如起草邮件、写代码、回答文档问题、创建会话代理、提供软件自然语言接口、辅导学科、语言翻译、假扮角色等。还可体验 OpenAI 在线编辑器的聊天格式。
2024-12-21
目前,有没有能替代My GPT这种功能的外国ai?
目前,在国外有一些能够替代 My GPT 功能的 AI 产品。例如,ChatGPT 是由 OpenAI 开发的知名 AI 助手,它在全球范围内具有广泛的影响力。ChatGPT 具有开创性,是首批向公众开放的大规模商用 AI 对话系统之一,改变了人们对 AI 的认知,为技术发展指明了方向。其界面简洁直观,交互流畅自然,降低了使用门槛。从技术角度看,背后的 GPT 系列模型性能和能力处于行业领先地位。但它也有局限性,且对于国内用户可能存在网络连接等问题。 此外,Google 的 Bard 也是一种选择。在写代码领域,GitHub 的 Copilot 有一些替代品,如 Tabnine、Codeium、Amazon CodeWhisperer、SourceGraph Cody、Tabby、fauxpilot/fauxpilot 等。 Meta 在 2023 年 2 月开源了 LLaMA 1,并在 7 月发布了进阶的 Llama 2 且允许商用,此举推进了大模型的发展。
2024-12-20
怎么使用Chatgpt
以下是使用 ChatGPT 的方法: 1. 英文学习老师制作的 GPT 工作流: 先把特定的 prompt 喂给 ChatGPT(建议开新对话专门用于学习英文)。 ChatGPT 会扮演美国好朋友,对输入的英文和中文表达返回更地道的表达,对俚语部分加粗,还会举一反三给出更多例子帮助理解和记忆。输入特定语句,ChatGPT 会输出对话回顾并建议 3 个任务强化记忆。 建议使用方式:开一个窗口,复制 prompt;手机端打开历史记录;点右上角耳机图标,开始打电话,既能练口语又能练听力;结束后看回顾帮助阅读。 2. 苹果系统安装、订阅 GPT4 教程: 在 AppleStore 下载 chatgpt:中国区正常下载不了,需切换到美区。美区 AppleID 注册教程参考知乎链接:。最终在 AppleStore 搜到 chatgpt 下载安装,注意别下错。 支付宝购买苹果礼品卡充值订阅付费 App:打开支付,地区切换到美区任意区,找到品牌精选 折扣礼品卡,点击大牌礼品卡,下滑找到 App Store&iTunes US 礼品卡,按需购买,建议先买 20 刀。具体步骤为支付宝购买礼品卡、在 apple store 中兑换礼品卡、在 chatgpt 中购买订阅 gpt plus,中途不想订阅可在订阅列表中取消。 3. 使用 ChatGPT 4o: 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员在苹果或安卓手机购买的,电脑上能登录。 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音即可体验流畅的语音对话。
2024-12-19
agi和chatgpt哪个更智能
AGI(通用人工智能)和 ChatGPT 难以简单地比较谁更智能。 ChatGPT 是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具,于 2022 年 11 月 30 日发布,目前使用的是 GPT4 的 LLM。GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。 AGI 被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。OpenAI 最新开发的 GPT4 模型在各种领域和任务中表现出卓越的能力,被认为可以被合理地视为 AGI 系统的早期(但仍不完整)版本。它可以完成涉及数学、编程、视觉、医学、法律、心理学等新颖而困难的任务,且表现与人类水平非常接近,远超先前的模型如 ChatGPT。 然而,不能简单地说 AGI 就比 ChatGPT 更智能,因为 AGI 是一个更广泛的概念,而 ChatGPT 是基于语言模型的具体应用。它们在不同的方面和场景中展现出不同的能力和特点。
2024-12-19
如何向chatgpt写一个优秀的关于论文修改的提示词
以下是一些关于向 ChatGPT 写优秀的论文修改提示词的建议: 1. 利用 ChatGPT 的对抗性演练生成提示词: 对指定文章进行改写。 对改写后的版本进行原创性检验。 根据检验结果,指导 ChatGPT 进一步优化。 重复上述过程,直至满足高度原创的标准。 采用逆向工程的方法,梳理 ChatGPT 的改写策略。 整合这些策略,形成一套提高文章原创性的高效提示词。 2. 对于文章修改的具体步骤: 先使用 ChatGPT 对一段文字进行改写。 对改写后的文字进行原创性检测。 把原创度检测工具的结果告诉负责二创的 ChatGPT 角色,让其继续改写。 不断重复上述步骤,让 ChatGPT 多次对文章进行二创。 让 ChatGPT 自己总结提示词。 整理 ChatGPT 返回结果,形成文字二次创作的通用提示词。 3. 对于 ChatGPT 给 DALL·E 3 优化提示词的元提示,需要注意: 不改变表情包、虚构角色的起源或未见过的人物,保持原始提示词的意图,优先考虑质量。 不创建任何具有冒犯性的图像。 对于传统上存在偏见的场景,确保指定关键特征,如性别和种族,且方式无偏见。 对于包含特定人物或名人的名字、暗示或参考的描述,进行谨慎的修改,用通用描述替代,不泄露其身份信息,除非是性别和体格。 对于提到的创意专业人士或工作室,用对其风格的描述替代名称,或在未知时删除该参考。 提示词必须详细、客观地描述图像的每个部分。思考描述的最终目标,并推断出能生成满意图像的内容。
2024-12-19
如何调教GPT
以下是调教 GPT 的一些方法: 1. 相信 GPT 的能力,大胆向它提要求。 2. 明确自身需求,向 GPT 提出准确的要求,如同给员工安排工作。 3. 不断追问,只要有不明白的地方,就目标明确、表达精确地追问。 4. 若需要个性化服务,向 GPT 提供准确信息,例如直接提供文件目录地址。 5. 微调方面: 训练数据是教导 GPT 说话的关键,数据需为 JSONL 文档,每行是一个提示完成对。 微调的提示和补全设计不同于基础模型,通常每个训练示例包含一个输入及其相关输出,无需多个示例。 可使用 CLI 数据准备工具将数据转换成所需格式,该工具接受多种格式,要求包含提示和完成列/键。 6. 像高手一样编写 GPT 并完成“找电影”的操作: 前往 themoviedb.org 注册并申请 API KEY,注册后点击邮箱验证邮件中的链接,依次点击相关操作获取 API 读访问令牌并记录备用。 构建 GPT 时,新创建一个 GPT,按照指定内容设置 Instructions,并添加相关 Action。 总之,提问的逻辑和准确度是能否用好 GPT 的核心竞争力。
2024-12-18
语音理解哪个AI模型比较好?
以下是一些在语音理解方面表现较好的 AI 模型: 1. Fish Agent V0.1 3B 语音处理模型: 支持多语言 TTS,包括英语、中文、德语、日语、法语、西班牙语、韩语、阿拉伯语等。 采用端到端架构,支持即时语音克隆与文本到语音转换。 具有超快响应,能在 200 毫秒内完成文本到音频转换。 详细介绍: 演示地址: 2. 腾讯混元大模型(HunyuanLarge): 是全球最大 MoE 开源模型,拥有 3890 亿参数,活跃参数 520 亿。 具备强长文本处理和常识推理能力,支持 256K 上下文窗口。 通过数据增强,使用合成数据提升对未见内容的理解。 详细介绍: 模型下载: 技术报告:
2024-12-19
国内做视觉理解的大模型厂商有哪些
国内做视觉理解的大模型厂商有以下这些: 北京: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com 上海: 商汤(日日新大模型):https://www.sensetime.com MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 此外,在 0 基础手搓 AI 拍立得的模型供应商选择中,还有以下视觉类大模型厂商: 智谱 GLM4V:通用视觉类大模型,拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,一个接口支持图片/视频/文本,视频和图片类型不能同时输入,调用成本为 0.05 元/千 tokens, 阿里云百炼 qwenvlplus:通用视觉类大模型,拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为¥0.008/千 tokens,训练成本为¥0.03/千 tokens, 阶跃星辰:通用视觉类大模型,响应速度快,支持视频理解,输入成本为¥0.005~0.015/千 tokens,输出成本为¥0.02~0.07/千 tokens, 百度 PaddlePaddle:OCR,垂直小模型,文本识别能力补齐增强,私有化部署服务费,API 调用在¥0.05~0.1/次,
2024-12-19
智能鸿沟和国际协作写认识理解、研究方向、未来
以下是关于智能鸿沟和国际协作的认识理解、研究方向及未来的相关内容: 认识理解: 目前对于智能鸿沟的研究主要集中在人工智能、自动化等相关趋势在不同行业中对劳动力的影响,包括其造成的劳动力跨部门的变化,以及由此产生的劳动力需求和就业机会。 研究方向: 研究不同行业因人工智能的广泛采用所带来的劳动力影响。 探索人工智能在各行业广泛应用所产生的劳动力需求和就业机会。 明确更好地理解和追踪劳动力影响、需求及机会方面存在的研究差距和所需数据。 提出应对上述挑战和机遇的建议。 未来: 在未来的研究中,需要进一步深入探讨智能鸿沟在全球范围内的演变和影响,以及国际协作在应对智能鸿沟方面所能发挥的作用。通过国际间的合作,共同制定策略,以缩小不同国家和地区在人工智能应用和发展方面的差距,促进全球的平衡发展。同时,持续关注人工智能技术的新发展和其对劳动力市场的动态影响,及时调整应对策略。
2024-12-18
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18
我想学习python,但我从没有学习过任何编程语言。如果按专业学习类的书去自学,我觉得很无聊,而且也不好理解。最主要的是学习时间太长。你可以帮我制定一个,利用AI快速学习python的方法吗?
以下是为您制定的利用 AI 快速学习 Python 的方法: 首先,您需要了解 Python 基础,包括基本语法(如变量命名、缩进等规则)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句 if、循环语句 for 和 while 控制程序执行流程)、函数(定义和调用函数、理解参数和返回值、掌握作用域和命名空间)、模块和包(学会导入标准库或第三方库、安装和使用包扩展功能)、面向对象编程(了解类和对象的定义与实例化、属性和方法的定义与调用、继承和多态)、异常处理(理解异常的概念和工作方式、使用 try 和 except 语句处理错误)以及文件操作(学会文件读写、处理文件与路径)。 您可以参考以下课程内容进行学习: 1. “和 Cursor AI 一起学 Python 编程”: 第二节:Python 基础语法与文本处理,45 分钟。教学内容包括 Python 基础语法、数据类型、控制结构、文本处理基础、字符串操作方法、文件读写操作。实践实验包括中文文本的基本处理,如统计字符数、词语数、句子数,讨论中文编码问题及解决方法。教学目标是掌握 Python 基本语法和结构,能够进行简单文本数据处理。 第三节:利用 Python 进行自然语言处理(NLP),45 分钟。教学内容包括自然语言处理的概念和重要性、Python 中的 NLP 库、分词原理举例、介绍结巴分词等工具、用 Jieba 进行课文分词。实践实验包括中文分词与词频分析,统计词频并找出高频词汇,讨论词频分析在语言教学中的应用。教学目标是掌握使用 Python 进行基本的 NLP 操作,理解 NLP 技术在语言研究和教学中的应用。 在学习过程中,您可以借助 AI 工具辅助理解和解决问题,例如通过智能问答获取对概念的解释,或者让 AI 为您生成示例代码帮助理解。祝您学习顺利!
2024-12-16