Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

企业微信个人账户接入大模型

Answer

企业微信个人账户接入大模型可以参考以下内容:

  • 基于 COW 框架的实现步骤:
    • COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。
    • 张梦飞同学写了更适合小白的使用教程:【保姆级】一步一图,手把手教你把 AI 接入微信副本
    • 可以实现:打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等等);常用开源插件的安装应用。
    • 正式开始前需要知道:ChatBot 相较于在各大模型网页端使用区别,本实现思路需要接入大模型 API 的方式实现(API 单独付费)。
    • 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;本文只探讨操作操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。
    • 支持多平台接入:微信、企业微信、公众号、飞书、钉钉等。
    • 有多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI 等等。
    • 支持多消息类型:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。
    • 有多部署方法:本地运行、服务器运行、Docker 的方式。
  • 全程白嫖拥有一个 AI 大模型的微信助手的实现步骤:
    • 搭建OneAPI,用于汇聚整合多种大模型接口,方便更换使用各种大模型,下面会告知如何白嫖大模型接口。
    • 搭建FastGpt,这是个知识库问答系统,把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答问题,如果不想接到微信去,自己用用,搭建完就可以,它也有问答界面。
    • 搭建chatgpt-on-wechat,接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用个小号,以防有封禁的风险。搭建完后想拓展 Cow 的功能,推荐参考 Yaki.eth 同学的教程Yaki:GPT /MJ 接入微信,里面的 cow 插件能进行文件总结、MJ 绘画的能力。
Content generated by AI large model, please carefully verify (powered by aily)

References

熊猫大侠:基于COW框架的ChatBot实现步骤

作者:熊猫大侠COW是基于大模型搭建的Chat机器人框架,将多模型塞进自己的微信里实现方案。基于这篇张梦飞同学也写了一个更适合小白的使用教程:[【保姆级】一步一图,手把手教你把AI接入微信副本](https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb)本文带你实现:1、打造属于自己的ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI画图等等)2、常用开源插件的安装应用正式开始前你需要知道:ChatBot相较于在各大模型网页端使用区别:本实现思路需要接入大模型API的方式实现(API单独付费)风险与注意事项:1、微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。2、本文只探讨操作操作步骤,请依法合规使用-大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求。-禁止将此操作用于任何非法目的。-处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。多平台接入:微信、企业微信、公众号、飞书、钉钉等。多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI等等多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。多部署方法:本地运行、服务器运行、Docker的方式

熊猫大侠:基于COW框架的ChatBot实现步骤

作者:熊猫大侠COW是基于大模型搭建的Chat机器人框架,将多模型塞进自己的微信里实现方案。基于这篇张梦飞同学也写了一个更适合小白的使用教程:[【保姆级】一步一图,手把手教你把AI接入微信副本](https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb)本文带你实现:1、打造属于自己的ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI画图等等)2、常用开源插件的安装应用正式开始前你需要知道:ChatBot相较于在各大模型网页端使用区别:本实现思路需要接入大模型API的方式实现(API单独付费)风险与注意事项:1、微信端因为是非常规使用,会有封号危险,不建议主力微信号接入。2、本文只探讨操作操作步骤,请依法合规使用-大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求。-禁止将此操作用于任何非法目的。-处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。多平台接入:微信、企业微信、公众号、飞书、钉钉等。多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM-4/LinkAI等等多消息类型支持:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。多部署方法:本地运行、服务器运行、Docker的方式

DIN:全程白嫖 - 拥有一个AI大模型的微信助手

1.搭建[OneAPI](https://github.com/songquanpeng/one-api),这东西是为了汇聚整合多种大模型接口,方便你后面更换使用各种大模型。下面会告诉你怎么去白嫖大模型接口。2.搭建[FastGpt](https://fastgpt.in/),这东西就是个知识库问答系统,你把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答你问题,这么个系统。如果你不想接到微信去,自己用用,其实到这里搭建完就OK了,他也有问答界面。3.搭建[chatgpt-on-wechat](https://github.com/zhayujie/chatgpt-on-wechat),接入微信,配置FastGpt把知识库问答系统接入到微信。这里建议先用个小号,以防有封禁的风险。搭建完后想拓展Cow的功能,我推荐Yaki.eth同学这篇教程[Yaki:GPT /MJ接入微信](https://waytoagi.feishu.cn/wiki/UADkwZ9B0iAWdTkFJIjcN7EgnAh),里面的cow插件能进行文件总结、MJ绘画的能力。完成上面3步就算OK了,那我们正式开始。

Others are asking
我想了解如何在微信公众号搭建一个能发语音的数字人
以下是在微信公众号搭建能发语音的数字人的相关步骤: 1. 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi: 工作流地址:https://github.com/chaojie/ComfyUImobvoiopenapi/blob/main/wf.json 相关文件: 记得下载节点包,放进您的 node 文件夹里,这样工作流打开就不会爆红了!ComfyUI 启动后就可以将 json 文件直接拖进去使用了! 2. 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人: 组装&测试“AI 前线”Bot 机器人: 返回个人空间,在 Bots 栏下找到刚刚创建的“AI 前线”,点击进入即可。 组装&测试步骤: 将上文写好的 prompt 黏贴到【编排】模块,prompt 可随时调整。 在【技能】模块添加需要的技能:工作流、知识库。 【预览与调试】模块,直接输入问题,即可与机器人对话。 发布“AI 前线”Bot 机器人: 测试 OK 后,点击右上角“发布”按钮即可将“AI 前线”发布到微信、飞书等渠道。 发布到微信公众号上: 选择微信公众号渠道,点击右侧“配置”按钮。 根据以下截图,去微信公众号平台找到自己的 App ID,填入确定即可。不用了解绑即可。 最后去自己的微信公众号消息页面,就可以使用啦。
2025-02-18
怎么在企业微信里接入deepseek
在企业微信里接入 DeepSeek 的步骤如下: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,开通一下(这里是免费的)。若无提示则直接到第 5 步,点击确认接入。 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到你的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】。 9. 把复制好的内容,也放到自己微信里保存好。 至此,我们已经完成拿到了模型的密钥。接着,就可以去把它配置到网页聊天里使用。
2025-02-18
写微信小程序,用哪个 ai 代码助手最好
以下是一些适用于写微信小程序的 AI 代码助手推荐: 1. DIN: 搭建 OneAPI 以汇聚整合多种大模型接口。 搭建 FastGpt 作为知识库问答系统。 搭建 chatgptonwechat 接入微信,并配置 FastGpt 把知识库问答系统接入到微信。 2. Cursor: 可通过任意 AI 工具获得代码,专业代码模型表现更优。 网址:https://www.cursor.com/ 3. Deepseek(新手推荐): 网址:https://www.deepseek.com/zh 方便获取游戏代码,国内能访问,网页登录方便,目前完全免费。 4. 通义灵码: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 5. JetBrains 自身的助手插件: 在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 6. Marscode 及 Tencent cloud AI code Assistant 等。 7. 无影的晓颖 AI 助手: 内置在云电脑里,使用流畅,但需要在无影的云电脑中。 需要注意的是,不同的 AI 代码助手在生成特定代码时可能有不同的表现,您可以根据自己的需求和实际使用体验进行选择。
2025-02-17
ai接入微信、钉钉聊天的软件
以下是关于将 AI 接入微信、钉钉聊天的相关信息: 基于 COW 框架的 ChatBot 实现步骤: 作者为熊猫大侠,COW 是基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信。 张梦飞同学写了更适合小白的使用教程: 。 可实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)和常用开源插件的安装应用。 正式开始前需知:ChatBot 相较于在各大模型网页端使用区别在于需要接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 零基础模板化搭建 AI 微信聊天机器人: COW 全称 Chatgptonwechat,可在微信、飞书、钉钉等主流社交平台上实现对接各种大模型的功能。 在刚买的腾讯云服务器上通过 Docker 运行 COW,并将之前在极简未来平台创建的 API 信息填入其中。 使用 Docker 服务部署 COW 组件,宝塔面板可让技术小白以图形交互方式运维服务器,手动配置部署容器编排模板。
2025-02-15
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
手机微信怎么接入DeepSeek
目前微信尚未直接接入 DeepSeek。但学而思已表示将接入 DeepSeek“深度思考模式”,预计在 2 月内陆续于相关机型上线;钉钉已经全面接入 DeepSeek 系列模型;扣子现已支持满血版 Deepseek 全家桶,R1 模型现支持所有用户免费体验,每个用户每日限 20 条对话。 如果您想使用 DeepSeek,可按以下步骤操作: 1. 搜索 www.deepseek.com,点击“开始对话”。 2. 将装有提示词的代码发给 Deepseek。 3. 认真阅读开场白之后,正式开始对话。 关于 DeepSeek 提示词的设计思路: 1. 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 4. 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 5. 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 完整提示词版本为 v 1.3,特别鸣谢李继刚的【思考的七把武器】在前期为其提供了很多思考方向,以及 Thinking Claude(这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源)和 Claude 3.5 Sonnet(最得力的助手)。 如有任何问题请联系后台,电子邮箱:alolg@163.com
2025-02-12
AI如何接入APP
以下是将 AI 接入 APP(以微信为例)的详细步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时已接通。 2. 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”,其中的“中文部分,便是设置 AI 提示词的地方,您可以进行更改。 3. 此后,进行任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”。 4. 然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 5. 再往后就是添加插件,讲解得非常清晰,完成上述步骤后,相信您也能搞定插件的安装。点击文章,会直接定位到您该操作的那一步。 6. 若认为上述步骤简单,尚有余力,可以继续看。 开始部署(这里继续): 1. 复制代码时注意复制全,每次只需要粘贴一行,然后点击一次回车。 第一步:cd /root || exit 1 第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(若有卡点,进行不下去,可能是服务器网络问题,去拉取时下载不全,可复制网址,手动下载到电脑上,然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。) 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 第六步:执行完成后,刷新一下,重新进入终端,若最左侧出现了(AI)的字符,则恭喜您。 配置环境: 1. 打开刚才保存的“外网面板地址”。 2. 输入账号密码。 3. 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 4. 首次会有个推荐安装,只安装 Nginx 1.22 和 MySQL 5.7 即可,其他的取消勾选。 5. 点击“其他菜单”,出现相应样式,会让您关联,点击【关闭】,直接操作第 4 步【开始部署】。绿色字体的三个步骤可以不做。(这里的步骤,用不到,可以不关联)若想关联,可以点击【点击查看】按钮,跳转进入腾讯云。 6. 点击“API 密匙关联”点击“新建秘钥”。复制这两个,一定保存好。 7. 点击确定后,列表上会有一个 APPID,这三个串码,依次对应粘贴到刚才的登录窗口里即可。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
将deepseek接入飞书
以下是关于将 DeepSeek 接入飞书的相关信息: 学而思表示将接入 DeepSeek“深度思考模式”,预计将在 2 月内陆续于相关机型上线,全面升级用户的 AI 学习体验。 钉钉已经全面接入 DeepSeek 系列模型。 扣子现已支持满血版 Deepseek 全家桶,R1 模型现支持所有用户免费体验,每个用户每日限 20 条对话。 接入方法和途径: 2 月 14 日 8 点有关于在 Coze 搭建满血版 R1 bot 的直播,直播结束后可看回放,地址为: 。 学习文档: 。 创建账号:如果是普通账号,请自行升级或注册专业号后使用。 创建智能体:点击创建,先完成一个智能体的创建。如果在最上面的教程里已经创建好自己的推理点了,那么直接在 Bot 编排里就可以直接看到和选择创建好的推理模型。 在飞书多维表格上调用 DeepSeek 的自定义 AI(DeepSeek 版)地址为:https://bytedance.larkoffice.com/base/extension/replit_3f6c0f185eac23fb ,支持 DeepSeek R1、V3 模型,支持 DeepSeek 官方、火山方舟、硅基流动三个服务商。 如有任何问题请联系后台,电子邮箱:alolg@163.com 。 注意事项:如果发布到公共空间,其他人用的是您的 API,要注意 Token 消耗(也可以设置成仅自己使用)。
2025-02-17
wps怎么接入deepseek 流程
以下是 WPS 接入 DeepSeek 的流程: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点:点击在线推理创建推理接入点 3. 为接入点命名为 DeepSeekR1。然后可能会提示:“该模型未开通,开通后可创建推理接入点”。如果有提示,就点击“立即开通”,开通一下就可以了。如果无提示则直接到第 5 步,点击确认接入。 4. 点击“立即开通”跳转到此页面,勾选全部模型和协议,一路点击开通即可。(这里是免费的) 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到您的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】 8. 如果您已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】 9. 把这个复制好之后,也放到您自己微信里,保存好。到这一步,我们已经完成拿到了模型的密钥。接着,就可以去把它配置到网页聊天里使用。
2025-02-17
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大模型产品对比
以下是对一些大模型产品的对比介绍: 智谱清言:由智谱 AI 和清华大学推出,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。 模型特点:在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。更擅长专业能力,但代码能力有优化空间,知识百科稍显不足,是很有竞争力的大模型。 适合应用:场景广泛,可优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及长文本记忆相关场景,在较复杂推理应用上效果不错,也适用于广告文案、文学写作。 其他大模型产品: OpenAI 发布 GPT4 科大讯飞发布星火 1.0 及升级至星火 3.0 百度发布文心一言 1.0 及升级至 V3.5 清华开源 ChatGLM 360 发布 360 智脑 1.0 及升级至智脑 4.0 复旦开源 MOSS 元语开源 ChatYuan 阿里云发布通义千问 1.0 及开源 Qwen7B 商汤科技发布商量 1.0 及升级至商量 2.0、商量 3.0 昆仑万维发布天工 1.0 出门问问发布序列猴子 华为发布盘古 3.0 西湖心辰发布西湖大模型 云从科技发布从容大模型 理想汽车发布 MindGPT OPPO 发布 AndesGPT vivo 发布 BlueLM 小米发布大模型 MiLM 元象科技开源 XVERSE13B Google 发布多模态大模型 Gemini 上海人工智能实验室开源 InternLM20B 百川智能发布 Baichuan2—Turbo 关于大模型在营销方面的应用: 大模型在实体类产品的营销标语生成上表现较好,虚拟类产品相对欠佳。可能是因为大模型训练数据中实体类语料多,更能调用已有知识加工,而虚拟类产品非标准品,大模型认识不足。 情绪价值在营销领域有很多用武之地,除快消商品外,很多产品的营销需要反复沟通,虚拟产品对感性成交依赖更大,大模型在这方面仍有很大发展空间。
2025-02-18
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18