Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyui中deforum

Answer

ComfyUI 中的 Deforum 相关知识如下:

  • 生图原理:
    • Denoising U-Net(去噪 U-Net 结构):ComfyUI 底层依赖 Stable Diffusion,去噪过程由 U-Net 网络完成。U-Net 是编码器-解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 U-Net 模型逐步将噪声图像还原成有意义的图像。
    • Cross Attention(交叉注意力):在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件。在 ComfyUI 中通过“文本提示”和“条件输入”节点实现,其可视化界面可调整交叉注意力机制中的参数,如文本提示的权重,直接影响生成图像的内容。
    • Skip Connection(跳跃连接):是 U-Net 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转,可查看中间生成结果并通过跳跃连接调整特定尺度上的生成效果。
    • Switch(切换器):在图中代表去噪过程中不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型的参数节点或自定义网络结构节点,对不同阶段的噪声去除策略进行微调。

FizzleDorf 的 Deforum 指南:

  • 这是 Automatic1111 Webui 中 Deforum 扩展的功能和设置的概述。如果在 Google Colab 中使用笔记本,可使用guide获取控制概述(对 A1111 用户也是很好的参考)。安装并重启后,Webui 中有单独的标签页,其中 Deforum 的每个部分都有另一组标签。作者将对控制、参数和用途进行细分介绍。对比视频由 hithereai 创建,更多技术、工作流程和资源(如掩码和设置文件)计划添加。参考https://github.com/deforum-art/deforum-for-automatic1111-webui/wiki/Animation-Video-Examples-Gallery
Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUI的生图原理 副本

U-Net模型:ComfyUI的底层依赖Stable Diffusion,而去噪过程是由U-Net网络来完成的。U-Net是一种编码器-解码器结构,能够处理多尺度的特征表示。在ComfyUI中,去噪的每个步骤通过模型推理模块实现,这个模块会调用训练好的U-Net模型,逐步将噪声图像还原成有意义的图像。Cross Attention(交叉注意力):交叉注意力机制在Stable Diffusion中尤为重要,它允许模型在生成过程中融入文本提示、图像、语义信息等条件。在ComfyUI中,这部分通过“文本提示”和“条件输入”节点实现。ComfyUI的可视化界面允许你调整和修改这些交叉注意力机制中的参数,例如文本提示的权重,这直接影响生成图像的内容。Skip Connection(跳跃连接):跳跃连接是U-Net的核心部分,能够在不同尺度之间共享特征。这在ComfyUI的节点网络中表示为中间过程数据的流转。例如,你可以在不同的推理步骤中查看中间生成结果,并通过跳跃连接调整特定尺度上的生成效果。Switch(切换器):在图中,切换器代表在去噪过程中的不同阶段对特征流的控制。在ComfyUI中,你可以通过修改模型的参数节点或自定义网络结构节点,对不同阶段的噪声去除策略进行微调。

FizzleDorf的 Deforum指南

This Page is an overview of the features and settings in the Deforum extension for the Automatic1111 Webui.If you are using the notebook in Google Colab,use this[guide](https://docs.google.com/document/d/1pEobUknMFMkn8F5TMsv8qRzamXX_75BShMMXV8IFslI/edit)for the overview of controls(This is also a good alternate reference for A1111 users as well).The Extension has a separate tab in the Webui after you install and restart.In it,there is another set of tabs for each section of Deforum.I'll be giving a breakdown of the controls,parameters and uses.Comparison videos were created by hithereai,thanks for putting together these great examples![https://github.com/deforum-art/deforum-for-automatic1111-webui/wiki/Animation-Video-Examples-Gallery](https://github.com/deforum-art/deforum-for-automatic1111-webui/wiki/Animation-Video-Examples-Gallery)I plan on adding techniques,more workflows and resources like masks and settings files.

FizzleDorf的 Deforum指南

This Page is an overview of the features and settings in the Deforum extension for the Automatic1111 Webui.If you are using the notebook in Google Colab,use this[guide](https://docs.google.com/document/d/1pEobUknMFMkn8F5TMsv8qRzamXX_75BShMMXV8IFslI/edit)for the overview of controls(This is also a good alternate reference for A1111 users as well).The Extension has a separate tab in the Webui after you install and restart.In it,there is another set of tabs for each section of Deforum.I'll be giving a breakdown of the controls,parameters and uses.Comparison videos were created by hithereai,thanks for putting together these great examples![https://github.com/deforum-art/deforum-for-automatic1111-webui/wiki/Animation-Video-Examples-Gallery](https://github.com/deforum-art/deforum-for-automatic1111-webui/wiki/Animation-Video-Examples-Gallery)I plan on adding techniques,more workflows and resources like masks and settings files.

Others are asking
我要配置一台跑ComfyUI的电脑,请给我最具性价比的推荐
以下是为您推荐的跑 ComfyUI 最具性价比的电脑配置: 系统:Windows 7 以上。 显卡:建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),最低要求 NVDIA 独立显卡且显存至少 4G 起步。SDXL 出来后,最低需要 8GB 显存+32GB 运行内存,12GB 可流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配可能会经常爆显存。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。最好把软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 CPU:无特别要求,但如果您的电脑能顺畅清晰地玩 3A 游戏,那运行 ComfyUI 通常也没问题。 需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。配置上不封顶,您可以根据自己的需求和预算来选择。
2025-02-15
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
如何凭借comfyUI,成为自由职业工作者
ComfyUI 是一种具有独特特点和优势的工具,以下是关于如何凭借它成为自由职业工作者的相关内容: ComfyUI 的概念和重要性: ComfyUI 的 UI 界面相较于 SD WebUI 更为复杂,除输入框外还有很多块状元素和复杂连线。 虽然学习成本较高,但连线并不复杂,小方块与 SD WebUI 的输入框和按钮作用相同,都是对参数进行配置,连线类似搭建自动化工作流,从左到右依次运行。 ComfyUI 的功能和优势: 从功能角度看,它与 SD WebUI 提供的功能相同,但以连线方式呈现。 通过改变节点可实现不同功能,如一个是直接加载图片,一个是通过画板绘制图片,从而实现导入图片生图或绘图生图等不同功能。 选择 ComfyUI 的核心原因在于其自由和拓展性,可根据自身需求搭建适合自己的工作流,无需依赖开发者,还能开发并改造节点。 ComfyUI 的基础界面和操作: 熟悉基本界面,如创建第一个工作流时,要进行加载 Latent(设置图片宽高和批次)、加载 VAE 等操作。 节点分为起始节点、最终输出节点和过程执行节点,将各节点按规则串联,如 checkpoint 加载器、CLIP 对应链接正向和负向提示词等,最终得到工作流。 要成为凭借 ComfyUI 的自由职业工作者,需要多练习和使用,尝试通过变现图片获取收益。
2025-02-10
可以不学sd而是直接学comfyui
学习 ComfyUI 而不先学习 SD 是可行的。ComfyUI 具有一些独特的优势,例如更接近 SD 的底层工作原理,能够实现自动化工作流以消灭重复性工作,作为强大的可视化后端工具还能实现 SD 之外的功能,如调用 API 等,并且可根据定制需求开发节点或模块。 比如,有人基于 ComfyUI 中的创建了工作流,不仅能用于绿幕素材的抠图,还能自动生成定制需求的抠图素材,全程只需几秒。 在电脑硬件方面,使用 ComfyUI 时,系统要求 Windows7 以上,显卡要求 NVDIA 独立显卡且显存至少 4G 起步,硬盘需留有至少 100G 空间(包括模型)。但 mac 系统、AMD 显卡、低显卡的情况也能安装使用,只是功能不全、出错率偏高,严重影响使用体验,建议升级设备或采用云服务器。
2025-02-08
ComfyUI教程
以下是一些关于 ComfyUI 的学习教程资源: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了从新手入门到精通各个阶段的系列视频教程,可在查看。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:一般设置在 6 8 之间较好。 5. sampler_name:可通过此设置采样器算法。 6. scheduler:控制每个步骤中去噪的过程,可选择不同调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置为 1。 内容由 AI 大模型生成,请仔细甄别。
2025-02-07
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势:对显存要求相对较低,启动速度快,出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在;生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-02-07
deforum中初始化视频路径的格式?
在 deforum 中,初始化视频路径的格式如下: |Parameter|Description| ||| |video_init_path|Path to the input video. This can also be a URL as seen by the default value.| |video_init_path|Path to the video you want to diffuse. Can't use a URL like init_image|
2024-10-18
deforum中初始化为什么不能以视频路径的视频进行风格转变?而是随机生成新视频?是哪里出现了问题?
很抱歉,目前知识库中没有关于“deforum 中初始化不能以视频路径的视频进行风格转变,而是随机生成新视频的原因及问题所在”的相关内容。但一般来说,出现这种情况可能是由于以下原因: 1. 视频格式或编码不兼容:deforum 可能不支持您所提供的视频的特定格式或编码方式。 2. 参数设置错误:可能在初始化过程中的某些参数设置不正确,导致无法按照预期使用指定视频进行风格转变。 3. 软件版本问题:您使用的 deforum 版本可能存在缺陷或不具备该功能。 建议您检查视频格式和编码,确认参数设置是否正确,并尝试更新到最新版本的 deforum 以查看是否能解决问题。
2024-10-18