直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何通过投喂文档做私人智能体

回答

要通过投喂文档做私人智能体,可以参考以下步骤:

  1. 了解智能体的基本概念:
    • 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。
    • 具有强大的学习能力、灵活性和泛化能力。
    • 核心在于有效控制和利用大型模型,提示词设计直接影响智能体的表现和输出结果。
  2. 基于公开的大模型应用产品进行实践:
    • 如 Chat GLM、Chat GPT、Kimi 等。
    • 以 Chat GPT 为例:
      • 点击“浏览 GPTs”按钮。
      • 点击“Create”按钮创建自己的智能体。
      • 使用自然语言对话或手工设置进行具体设置。
      • 开始调试智能体并发布。
    • 以 Chat GLM 为例:
      • 点击“创建智能体”按钮。
      • 输入对智能体的描述,如有准备好的提示词模板可直接粘贴。
      • 智能体配置可自动生成,默认勾选增强能力,可根据实际需求调整,也可上传本地文件作为知识原料形成知识库。
  3. 创建知识库:
    • 手动清洗数据,提高数据准确性。
    • 在线知识库:点击创建知识库,创建一个如画小二课程的 FAQ 知识库。选择飞书文档、自定义,输入###区分内容,可编辑修改和删除,添加 Bot 并在调试区测试效果。
    • 本地文档:注意合理拆分内容,如将课程章节按固定方式人工标注和处理,再选择创建知识库自定义清洗数据。
  4. 发布应用:点击发布,确保在 Bot 商店中能够搜到,只有通过发布才能获取 API。

此外,还涉及多智能体协同的概念,以及个人和社区提示词分享等内容。由于最近盗版事件频发,获取在线课件需要扫群主二维码。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

提示词培训课——Part2

现在,我们将进入智能体的学习环节。在开始之前,我们首先需要了解智能体是什么。我们现在接触到的智能体大多是建立在大模型之上的。这些智能体的发展历程是从一个基于符号推理的专家系统逐步演进而来的。随着时间的推移,技术的进步使得我们能够开发出更加复杂和高级的智能体。这些基于大模型的智能体具有以下特点:1.强大的学习能力:它们能够通过大量的数据进行学习,从而获得对语言、图像等多种信息的理解和处理能力。2.灵活性:这些智能体可以适应不同的任务和环境,表现出较高的灵活性和适应性。3.泛化能力:它们能够将学到的知识泛化到新的情境中,解决之前未见过的类似问题。智能体的核心在于如何有效地控制和利用这些大型模型,以达到我们设定的目标。这通常涉及到精确的提示词设计,以引导模型朝着期望的方向发展。提示词的设计直接影响到智能体的表现和输出结果。接下来,我们可以展示一张图来更直观地说明这一点。在这张图的中心是提示词,它代表了智能体与用户或其他智能体交互的设定和逻辑。[heading1]十三、LangGPT结构化提示词[heading1]十四、动手实践——Chat GPT版本[content]在介绍了智能体的基本概念之后,我们将继续深入探讨,并动手实践制作智能体。我鼓励大家基于一些公开的大模型应用产品(如Chat GLM、Chat GPT、Kimi等),尝试开发属于自己的智能体。记住,智能体的开发是一个不断学习和进步的过程。不要害怕犯错,每一次尝试都是向成功迈进的一步。通过实践,您将能够更好地理解智能体的潜力,并发掘其在各种应用场景中的可能性。Step.1点击“浏览GPTs”按钮Step.2点击“Create”按钮创建自己的智能体Step.3使用自然语言对话进行具体设置Step.3使用手工设置Step.4开始调试你的智能体并发布

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

本次创建知识库使用手动清洗数据,上节课程是自动清洗数据:[【智能体】用Coze在微信里搭建一个机器人,还能挖掘销售线索](https://a1i1hjmvcf0.feishu.cn/docx/JSdDd8ybLo7OHqxmePwcHlbLn3b?from=from_copylink),自动清洗数据会出现目前数据不准的情况,本节视频就尝试使用手动清洗数据,提高数据的准确性。[heading3]3.1在线知识库[content]点击创建知识库,创建一个画小二课程的FAQ知识库知识库的飞书在线文档,其中每个问题和答案以###分割,暂时不要问为什么。选择飞书文档选择自定义的自定义输入###然后他就将飞书的文档内容以###区分开来,这里可以点击编辑修改和删除。点击添加Bot添加好可以在调试区测试效果[heading3]3.2本地文档[content]本地word文件,这里要注意了~~~如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面画小二这个课程80节课程,分为了11个章节,那训练数据能不能一股脑全部放进去训练呢。答案是~~不能滴~~~正确的方法,首先将11章的大的章节名称内容放进来,如下图所示。章节内详细内容格式如下如所示,如果你再分节的内容,依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理然后选择创建知识库自定义清洗数据,这里不再赘述。[heading3]3.3发布应用[content]点击发布确保在Bot商店中能够搜到,如图所示可以搜索到画小二智能小助手,这个很重要,没有通过发布的获取不到API的。

提示词培训课——Part2

Step.1点击“创建智能体”按钮Step.2输入你对于智能体的描述,如果你有准备好的提示词模板,可以直接粘贴上去Step.3 ChatGLM的智能体配置可以自动生成,其默认勾选了增强能力,你可以根据智能体实际需求进行调整,同时你也可以根据实际情况上传你自己本地文件作为知识原料形成属于智能体的知识库[heading1]十六、多智能体协同[content]接下来,我们来探讨多智能体协同的概念。在单智能体或提示词链中,我们通常使用提示词来控制智能体执行特定任务。然而,这种方法可能会遇到一些挑战:如果单一智能体要处理一个非常复杂的任务,我们可能需要不断修改和重写提示词,这不仅会降低工作效率,还会让提示词的逻辑不清晰(即在一个提示词中指派模型干很多类工作,这正好违背了我们在第一部分所讲述的模型特性和原则)。[heading1]十七、个人提示词分享[content]现在,我想与大家分享一些我个人使用的提示词。这些提示词我已经使用了一段时间,虽然没有具体的案例展示,但它们具有很高的通用性,能够适应多样化的任务需求,如果你有特定场景需求,可以以此为基础进行修改。社区提示词分享在课件中。[heading1]十八、在线课件[content]由于最近盗版事件频发,需要课件的扫群主二维码获取。

其他人在问
哪个ai可以帮我识别数学公式并写成文档呢
像 FindFormula 这样的函数已经在使用机器学习启发的技术来获取数据并尝试为您生成“合理的公式”,它或许能够帮助您识别数学公式并写成文档。
2024-10-30
寻找可以对电脑桌面打开的PDF文档、网址进行总结的ai
以下是一些可以对电脑桌面打开的 PDF 文档、网址进行总结的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 此外,还有一些相关的工具和网站: 1. AI PDF(与免费帐户。它消除了重复上传文件的需要。PRO 版本可以搜索 1000 个 PDF 和 OCR 文档,为冗长的文档提供上级摘要。 2. TXYZ 网站:是一个帮助大家搜索、查询专业文献并可以进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-24
怎么写文档会让RAG 效果更好
要让 RAG 效果更好地写文档,您可以参考以下要点: 1. 文档切割: 合理的文档切割能让系统返回更完整、连贯的结果。例如,对于“猫咪的饮食习惯是什么?”的查询,将相关内容切割为“猫咪的饮食习惯取决于它们的年龄、健康状况和品种。”和“幼猫需要更多的蛋白质,而成年猫则需要均衡的营养。”这样的文档块。 目前免费平台一般提供智能切割和手动切割两种方式。但在当下技术水平下,智能切割效果一般,对于以问答为主的客服场景,将一个问答对切成一个文档片,检索效果会很好。 2. 整理知识库文档阶段: 确定知识库包含的文档类型,如政策原文文档、业务积累的 QA、操作指引、产品说明等,并进行预处理。 知识库本身质量对最终效果至关重要,是大模型生成回答的原始语料。 优化方向包括: 文档格式:PDF 文档格式信息相对简洁,干扰少,但也有说.docx 效果更优的,需根据场景测试。 文档命名:尽量控制在 10 字左右,涵义简洁明了,避免无意义的数字、符号或缩写。 文档语言:尽量统一为同一种,避免中英文混切导致乱码和无用数据。 文档内容:设置清晰的一二级标题,对特殊元素进行处理。 构建问答对:能达到更好效果,但耗费人力和运营成本,需综合考虑。 3. 通用语言模型微调可完成常见任务,更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源。Meta AI 引入的 RAG 方法把信息检索组件和文本生成模型结合,可接受输入并检索相关文档,给出来源,适应事实变化,不用重新训练就能获取最新信息并生成可靠输出。Lewis 等人(2021)提出通用的 RAG 微调方法,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。
2024-10-21
推荐5个自动写文档工具
以下为您推荐 5 个自动写文档工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 4. Wordtune:AI 写作助手,可重新表述和改进文本,使其更清晰专业,保持原始意图。 5. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 是受欢迎的选择;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-10-18
我有一个文档字数可能比较多,我希望ai能基于这个文档内容对我的问题进行回答,目前市面上能实现这一功能比较好的工具有哪些?
目前市面上能实现基于文档内容回答问题这一功能较好的工具包括: 1. 飞书:通过企业搜一搜或者自定义问答,智能伙伴可以基于用户有权限的文档内容回答用户提问。 2. Grammarly:不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 3. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 4. Latex:常用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 5. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 6. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 7. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 8. Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 9. Microsoft 365 Copilot:微软推出的整合 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,通过聊天形式完成用户需求。 10. Formula Bot:提供数据分析聊天机器人和公式生成器功能,可自然语言交互进行数据分析和生成 Excel 公式。 11. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成相关文本内容、执行情感分析、语言翻译等任务。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 较受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-10-18
如何使用ai去写软件需求设计文档,需要用到哪些工具
使用 AI 写软件需求设计文档可以参考以下步骤和工具: 1. 明确需求和目标:清晰界定软件的功能、性能、用户界面等方面的要求。 2. 收集相关信息:利用 AI 工具如学术搜索引擎、文献管理软件等搜集类似软件的需求文档和相关资料。 3. 分析总结信息:借助 AI 文本分析工具提取关键要点和主要观点。 4. 生成大纲:使用 AI 写作助手构建需求文档的大纲,涵盖引言、功能需求、非功能需求、界面设计等部分。 5. 撰写各部分内容:利用 AI 写作工具撰写需求文档的各个部分,并进行语法和风格检查。 6. 审阅和修改:通过 AI 审阅工具检查文档的逻辑性、一致性和准确性,并根据反馈进行修改。 7. 提交前检查:使用 AI 抄袭检测工具确保文档的原创性,并做最后的格式调整。 以下是一些可用于写软件需求设计文档的工具: ChatPRD、WriteMyPRD、Uizard、tldraw 等。 需要注意的是,AI 工具只是辅助,不能完全替代您的专业判断和思考,要确保文档的质量和准确性。
2024-10-17
人工智能是什么
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为,例如做人类擅长之事的科学。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。若知道实现目标的步骤和顺序,就能编写程序让计算机执行。 但有些任务,如根据照片判断人的年龄,我们无法明确大脑完成此任务的具体步骤,也就无法编写明确程序,这类任务正是人工智能感兴趣的。 人工智能的应用场景广泛,包括但不限于: 医疗保健:医学影像分析辅助诊断疾病、加速药物研发、提供个性化医疗、机器人辅助手术等。 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:自动驾驶、交通流量预测、物流优化等。 在健身领域,AI 健身利用人工智能技术辅助或改善健身训练和健康管理,有 Keep、Fiture、Fitness AI、Planfit 等相关产品。
2024-10-31
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
智能生图 生成logo的工具有哪些
以下是一些可以生成 logo 的智能生图工具: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 另外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 即梦也有相关功能,其制作步骤如下: 第 1 步:在即梦左侧点击「智能画布」,「上传图片」上传一张 logo 图,点击「图生图」输入描述词,参考程度为 55 ,选择「轮廓边缘」,点击立即生成。 第 2 步:右侧图层可看到 4 张图,选择喜欢的图;若不喜欢,可用局部重绘、消除笔等功能调整,也可重新生成。 即梦 AI 官网:https://jimeng.jianying.com/ ,有问题可发送到即梦@bytedance.com 。
2024-10-31
AI智能体
AI 智能体是拥有各项能力来帮助人们完成特定事情的一种存在。目前,不少大厂推出了自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。 生成式 AI 应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures 投资组合公司在这些类别中都是早期突破性的代表,其中心是 LLMs 的少样本推理能力。但生成式人工智能的承诺不止于此,能为您阅读和写作的人工智能很棒,更令人兴奋的是能够代表您思考和行动的人工智能。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。 在品牌卖点提炼中,AI 智能体也有应用。AI 在逻辑推理、数据分析、内容理解和输出上有独特的强项,但在搭建智能体之前,需要先明确 AI 的能力边界,比如 AI 对公司的主要产品、独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望的新渠道结果等了解程度接近于 0。AI 真正的能力在于能够通过分析数据和信息进行逻辑推理,解决复杂问题,擅长快速处理和分析数据,能够从中提取有价值的信息和模式,有大量的训练数据,可以输出比人类更全面的相关信息,可以理解用户所提供的内容,按照正确的结构梳理有效的输出内容。因此,在品牌卖点探索中,智能体更适合做一个引导型的助手,在思考路径陷入停滞时提供更多思考维度。 以扣子为例,它是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,功能涵盖从解决简单问答到处理复杂逻辑对话的广泛范围。开发完成后,还可以将构建的 Bot 发布到各种社交平台和通讯软件上。创建智能体可以通过简单 3 步:起一个智能体的名称,写一段智能体的简单介绍,使用 AI 创建一个头像。
2024-10-30
什么是AI 智能体?具体有哪些形式的产品?
AI 智能体简单来说就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了诸如“智能体 Agent”、bot 和 GPTs 等新名词。 AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会,出现了不少做 Agent 创业的公司。 在 C 端,比如社交方向,用户注册后先捏一个自己的 Agent,让其与他人的 Agent 聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。 在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那么还有帮助 B 端商家搭建 Agent 的机会,类似 APP 时代专业做 APP 的。 以 ChatGPT 的 GPTs 举例,一个智能体应用通常由以下几部分自定义操作组成: 1. 提示词:描述智能体的作用,定义智能体的回复格式。 2. 知识库:上传私有文件作为回答参考。 3. 外挂 API:请求第三方 API 获取实时数据。 4. 个性化配置:包括是否联网、是否使用图片生成、是否使用数据分析等。 常见的智能体开发平台有字节的扣子 Coze、Dify.AI 等。
2024-10-30
人工智能发展历史
人工智能的发展历史如下: 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。 发展历程: 二十世纪中叶,符号推理流行,带来专家系统等重要进展,但因方法局限性,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-30
私人知识库
以下是关于私人知识库的相关知识: 使用 GPT 打造个人知识库: 可先将大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,问题先通过 embeddings API 转换成问题向量,然后与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成新的 prompt 发送给 GPT API。 理解 embeddings: embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。 向量是数学中表示大小和方向的量,通常用一串数字表示,在计算机科学和数据科学中常用列表来表示。 计算向量之间距离常见的方式是欧几里得距离,即对应元素相减取平方和再开平方。 AI 时代的私人知识库: 私人知识库中的内容一般有两种:日常从互联网收集的优质信息和个人日常的思考以及分享。 基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案:训练专有大模型和利用 RAG(检索增强生成)技术。 训练专有大模型:可以使用个人知识库训练专有的大模型,但此方案并非当下主流,存在高成本、更新难度大等缺陷。高成本体现在需要大量计算资源和专业知识;更新难度大在于若要更新模型知识,需重新训练或微调模型,过程复杂耗时。
2024-10-22
有一个小朋友的私人教练微信群,个人手机中存储的微信聊天历史,如何提取成ai可以使用的知识库包含时间线,语音,图片视频。
目前要将个人手机中存储的包含时间线、语音、图片、视频的小朋友私人教练微信群聊天历史提取成 AI 可以使用的知识库,存在一定的技术难度。 对于文字聊天记录,可通过手动整理或使用一些第三方工具进行导出和整理。但对于语音、图片和视频,AI 直接处理和理解这些内容的能力有限。 语音需要先进行语音转文字的处理,这可能需要借助专门的语音转文字软件,且转换的准确性可能受到语音质量、口音等因素的影响。 图片和视频的内容提取则更为复杂,需要使用图像识别和视频分析技术,将其中的关键信息提取出来并转化为文字描述,但这种转化的准确性和完整性难以保证。 总的来说,要实现您的需求,需要综合运用多种技术和工具,并且可能无法达到完美的效果。
2024-08-08