Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有没有数据清洗AI

Answer

以下是关于数据清洗 AI 的相关内容:

数据清洗对于 AI 至关重要,就如同为 AI 做全面的“体检”,是预防 AI 幻觉的根本措施。

在 AI 领域,数据清洗就像医生为病人清除体内毒素一样,数据科学家会利用各种技术手段,对训练数据进行“清洗”,去除错误信息、补充缺失数据、修正不一致内容,并尽可能消除数据中的偏见。

在文档准备与预处理环节,例如构建 RAG 知识库时,会有数据清洗和去噪这一重要步骤,其目的包括清理无效数据以提高后续检索速度,以及统一数据格式便于后续处理和检索。

在大模型训练中,高质量的数据清洗和精细整理能将粗糙的数据打磨成有价值的资源。然而,在中国的 AI 创业生态中,高质量的数据处理服务较为稀缺,中文互联网数据质量相对较低,这给大模型的训练带来了挑战。

Content generated by AI large model, please carefully verify (powered by aily)

References

【深度揭秘】AI 幻觉背后的技术真相与应对策略,探索人工智能的未来

正如我们在前文中提到的,低质量的训练数据是导致AI幻觉的重要原因。因此,为AI模型提供“干净”、“健康”的训练数据,就如同给AI做一次全面的“体检”,是预防AI幻觉的根本措施。数据清洗:就像医生为病人清除体内的毒素一样,数据科学家们会利用各种技术手段,对AI的训练数据进行“清洗”,去除错误信息、补充缺失数据、修正不一致的内容,并尽可能消除数据中的偏见。数据增强:为了让AI模型学习到更全面的知识,我们需要为它提供更多、更丰富的训练数据,就像给学生补充各种类型的练习题,帮助他们掌握不同的知识点和解题技巧。例如,在训练一个图像识别模型时,我们可以对已有的图像进行旋转、缩放、裁剪等操作,生成更多新的样本,从而提高模型的泛化能力。

这可能是讲 Coze 的知识库最通俗易懂的文章了

你要做AI知识库,你起码得有知识库吧,所以RAG的第一步就是准备知识库数据。当下技术下RAG的能力仍然以处理文本数据为主,例如PDF、在线云文档,EXCEL等等为了保证后续流程的质量,在文本准备时会有一个重要的环节,叫做文本的预处理。用专业的词汇叫做数据清洗和去噪。他的目的主要有两点清理无效的数据:删除无效、过时或者不相关的数据,提高后续的检索速度统一数据的格式:将不同的数据元转换成统一的格式,便于后续的处理和检索举个例子:当要整理书桌的时候,我们的第一步通常都是先将桌面上的垃圾给扔掉,然后才是整理桌面上的书本、电脑等物品。扔掉垃圾这一动作就是数据的清洗和去噪

中国大模型面临的真实问题:登顶路远,坠落一瞬

[title]中国大模型面临的真实问题:登顶路远,坠落一瞬[heading1]五、"你有我也有"接下来,让我们把目光转向数据这个同样关键的要素。在人工智能的世界里,数据就像是原油,而高质量的数据则是精炼后的汽油。虽然OpenAI训练大模型所用的中文数据也源自中国的互联网平台,但他们在数据处理上的额外努力,就像是将粗糙的原石打磨成璀璨的钻石。这种数据质量的提升,远非简单的数据标注工作所能企及,而是需要一支专业团队进行深度的数据清洗和精细整理。然而,在中国的AI创业生态中,高质量的数据处理服务就像是稀缺资源。在国内,数据获取的门槛相对较低,这看似是一个优势。然而,虽然数据获取容易,但高质量数据的获取却是另一回事。国内的大模型主要以中文数据为基础,这看似是一个自然的选择。但业内普遍认为中文互联网数据的质量相对较低。这种情况让人想起了信息论中的"垃圾进,垃圾出"原理。如果输入的数据质量不高,那么即使有最先进的算法,输出的结果也难以令人满意。这个现象在IT从业者的日常工作中得到了印证。当需要搜索专业信息时,他们往往会首选Google、arXiv或Bing等国际平台,而不是国内的搜索引擎。那么,可能有人会想:“那我买点优质数据不就完了吗?”但对于许多公司,尤其是初创企业来说,这笔投入看似是一个风险过高的赌注。更不要考虑到找到一个好的数据供应商是万里挑一的概率了。这个风险,创业公司很难担的起。如果大规模投入后,模型效果不如预期,那么这笔投资就像是泥牛入海。因此,许多公司选择了一条看似更安全的路径:直接使用开源数据进行训练,然后匆忙召开发布会。更有意思的是,在国内的AI领域,这份"黄金"似乎变成了一个难解的谜题。正如一位大厂AI线的负责人所言,"在中国,你能拿到的数据,别人也能拿到。"

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
我想利用AI帮助我快速分析Excel数据,做好数据清洗、分析的工作
以下是一些可帮助您利用 AI 快速分析 Excel 数据、做好数据清洗和分析工作的工具和方法: 1. 工具方面: Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,能在 Excel 中直接进行数据分析和决策支持。 Microsoft 365 Copilot:微软推出的整合了多种办公软件的 AI 工具,通过聊天形式,用户告知需求后,Copilot 会自动完成如数据分析、格式创建等任务。 Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能生成公式、相关文本内容、执行情感分析、语言翻译等任务。 2. 方法方面: 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但要注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。
2024-12-02
AI 数据清洗
以下是关于 AI 数据清洗的相关内容: 数据清洗对于预防 AI 幻觉和保证 AI 决策的准确性至关重要。 低质量的训练数据是导致 AI 幻觉的重要原因,因此为 AI 模型提供“干净”、“健康”的训练数据是根本措施。 数据清洗就像医生为病人清除体内的毒素,数据科学家会利用各种技术手段去除错误信息、补充缺失数据、修正不一致的内容,并尽可能消除数据中的偏见。 在准备 AI 知识库时,例如 RAG 流程中,文本预处理环节包含数据清洗和去噪,其目的包括清理无效的数据(删除无效、过时或者不相关的数据,提高后续的检索速度)以及统一数据的格式(将不同的数据元转换成统一的格式,便于后续的处理和检索)。 AI 的决策能力取决于输入数据的质量与多样性,“垃圾进,垃圾出”原理在 AI 决策中显著,数据中的偏见会被放大甚至造成认知扭曲。例如在招聘系统中,AI 可能因训练数据中的历史偏见更倾向于选取某一性别候选人。企业在使用 AI 时必须对输入的数据保持警觉。
2024-11-04
AI 数据清洗
AI 数据清洗是为 AI 模型提供高质量训练数据的重要环节,具有以下要点: 1. 是预防 AI 幻觉的根本措施,如同给 AI 做全面“体检”。 2. 像医生为病人清除体内毒素一样,利用各种技术手段去除错误信息、补充缺失数据、修正不一致内容,并尽可能消除数据中的偏见。 3. 为让 AI 模型学习更全面知识,可对已有数据进行增强操作,如对图像进行旋转、缩放、裁剪等生成新样本以提高模型泛化能力。 4. 对于准备 AI 知识库,如 RAG ,在准备数据时会进行文本预处理,包括数据清洗和去噪,目的是清理无效数据以提高检索速度,统一数据格式便于后续处理和检索,例如整理书桌时先扔掉垃圾。 5. AI 决策能力取决于输入数据质量与多样性,“垃圾进,垃圾出”原理显著,数据常无意中强化社会偏见,如在招聘系统中可能导致性别歧视等问题,企业使用 AI 时必须对输入数据保持警觉。
2024-11-04
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有没有把pdf转成word的ai
以下是一些可以将 PDF 转换成 Word 的 AI 工具和方法: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-14
有没有AI面试
有的,目前有一些 AI 面试官的相关产品。例如: 1. 用友大易 AI 面试产品:具有强大的技术底座、高度的场景贴合度、招聘全环节集成的解决方案、先进的防作弊技术以及严密的数据安全保障。能帮助企业完成面试,借助人岗匹配模型自主完成初筛,并对符合企业要求的候选人自动发送面试邀约。 2. 海纳 AI 面试:通过在线方式、无需人为干预完成自动面试、自动评估,精准度高达 98%,面试效率比人工方式提升 5 倍以上。同时候选人体验也得到改善、到面率比之前提升最高达 30%。 3. InterviewAI:这是一个在线平台,提供与面试职位相关的问题和由 AI 生成的推荐答案。候选人可以使用设备上的麦克风回答每个问题,每个问题最多回答三次。对于每个答案,候选人将收到评估、建议和得分。 不过,使用这些产品时,企业需要考虑到数据安全性和隐私保护的问题。 此外,在 3 月 19 日的 XiaoHu.AI 日报中,提到了一些其他的 AI 相关内容: 1. 克隆一个自己,用 AI 面试:创新的克隆 AI 面试应用。链接:https://x.com/imxiaohu/status/1770011969229390287?s=20 2. SystemAnimatorOnline,全身运动捕捉:基于 AI 的全身运动捕捉方案,仅需网络摄像头。新交互方式,适用于虚拟直播和视频制作。链接:https://github.com/ButzYung/SystemAnimatorOnline… 、https://x.com/imxiaohu/status/1769957973252796634?s=20 3. Apollo 机器人,自主制作果汁:展示与英伟达 Project GROOT 合作,实现任务自主完成。从人类示范中学习,无需回初始位置。链接:https://x.com/imxiaohu/status/1770047098731577481?s=20 4. MindEye2,重建大脑所见图像:仅需 1 小时 fMRI 数据,重建观察者所见图像。能识别多个图像选项中的实际所见。实现不同受试者数据的有效泛化。链接:https://medarcai.github.io/mindeye2/ 、https://arxiv.org/abs/2403.11207 、https://github.com/MedARCAI/MindEyeV2 、https://x.com/imxiaohu/status/1770021233129885989?s=20 5. 英伟达 Blackwell GPU
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
有没有免费制作数字人的网站?
以下是一些免费制作数字人的网站及使用方法: HEYGEN: 优点:人物灵活,五官自然,视频生成很快。 缺点:中文的人声选择较少。 使用方法:点击网址注册后,进入数字人制作,选择Photo Avatar上传自己的照片。上传后效果如图所示,My Avatar处显示上传的照片。点开大图后,点击Create with AI Studio,进入数字人制作。写上视频文案并选择配音音色,也可以自行上传音频。最后点击Submit,就可以得到一段数字人视频。 DID: 优点:制作简单,人物灵活。 缺点:为了防止侵权,免费版下载后有水印。 使用方法:点击上面的网址,点击右上角的Create vedio。选择人物形象,可以点击ADD添加照片,或者使用DID给出的人物形象。配音时,可以选择提供文字选择音色,或者直接上传一段音频。最后,点击Generate vedio就可以生成一段视频。打开自己生成的视频,可以下载或者直接分享给朋友。 KreadoAI: 优点:免费(对于普通娱乐玩家很重要),功能齐全。 缺点:音色很AI。 使用方法:点击上面的网址,注册后获得120免费k币,这里选择“照片数字人口播”的功能。点击开始创作,选择自定义照片。配音时,可以选择提供文字选择音色,或者直接上传一段音频。打开绿幕按钮,点击背景,可以添加背景图。最后,点击生成视频。 此外,在剪映中也可以生成数字人:在剪映右侧窗口顶部,打开“数字人”选项,选取一位免费的、适合的数字人形象,比如“婉婉青春”。选择数字人形象时,软件会播放声音,可判断是否需要,点击右下角的“添加数字人”,将其添加到当前视频中。软件会根据提供的内容生成对应音视频,并添加到当前视频文件的轨道中。左下角会提示渲染完成,可点击预览按钮查看效果。还可以为视频增加背景图片,删除先前导入的文本内容,点击左上角的“媒体”菜单并点击“导入”按钮,选择本地图片上传,将图片添加到视频轨道上,通过拖拽轨道右侧竖线使其与视频对齐。
2025-04-11
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11